9 research outputs found

    Functionalizing tetraphenylpyrazine with perylene diimides (PDIs) as high-performance nonfullerene acceptors

    Get PDF
    Perylene diimide (PDI)-based small molecular acceptors with a three-dimensional structure are thought to be essential for efficient photocurrent generation and high power conversion efficiencies (PCEs). Herein, a couple of new perylene diimide acceptors (PPDI-O and PPDI-Se) have been designed and successfully synthesized using pyrazine as the core-flanking pyran and selenophene-fused PDIs, respectively. Compared to PPDI-O, PPDI-Se exhibits a blue-shifted absorption in the 400–600 nm range, a comparable LUMO level, and a more distorted molecular geometry. The PPDI-Se-based organic solar cell device with PDBT-T1 as the donor achieved the highest PCE of 7.47% and a high open-circuit voltage (Voc) of up to 1.05 V. The high photovoltaic performance of PPDI-Se-based devices can be attributed to its high LUMO energy level, complementary absorption spectra with donor materials, favorable morphology and balanced carrier transport. The results demonstrate the potential of this type of fullerene-free acceptor for high efficiency organic solar cells

    Self-assembly enables simple structure organic photovoltaics via green-solvent and open-air-printing: Closing the lab-to-fab gap

    Get PDF
    The ultimate goal of organic solar cells (OSCs) is to deliver cheap, stable, efficient, scalable, and eco-friendly solar-to-power products contributing to the global carbon neutral. However, simultaneously balancing these five critical factors of OSCs toward commercialization is extremely challenging. Herein, a green-solvent-processable and open-air-printable self-assembly strategy is demonstrated to synchronously simplify the device architecture, improve the power conversion efficiency (PCE) and enhance the shelf, thermal as well as light illumination stability of OSCs. The cathode interlayer (CIL)-free self-assembled OSCs exhibit the PCE of 15.5%, higher than that of traditional inverted OSCs of 13.0%, which is among the top values for both CIL-free self-assembled OSCs and open-air blade-coated bulk-heterojunction OSCs. The remarkable enhancements are mainly ascribed to the finely selfassembly, subtly controlled donor/acceptor aggregation rate, and delicately manipulated vertical morphology. Besides, this strategy enables 13.2% efficiency on device area of 0.98 cm(2), implying its potential for scalability. These findings demonstrate that this strategy can close the lab-to-fab gap of OSCs toward commercialized cheap, stable, efficient, scalable, and eco-friendly OSCs

    Fabrication of high-surface-area, SiO2 supported polyimide carbon aerogel microspheres: electrochemical application

    No full text
    A series of polyimide (PI)/SiO _2 aerogel microspheres were prepared by using polyamide acid salt and hydrolyzed tetraethyl orthosilicate based on the reverse-phase emulsion method. Then, PI/SiO _2 aerogel microspheres were carbonized and etched to obtain carbon aerogel microspheres (CAMs). Scanning electron microscope, transmission electron microscope and nitrogen isothermal adsorption were used to characterize the micro-morphology and pore structure of the microspheres; and electrochemical workstation was used to test the electrochemical performance of the CAMs. The results showed that CAMs with different pore structures and specific surface area were obtained by adjusting the content of SiO _2 . Highest specific surface area of 1166.9 m ^2 g ^−1 and a total pore volume of 1.2369 cm ^3 g ^−1 were achieved at a SiO _2 content of 50%. When used as the electrode materials for supercapacitors, these CAMs demonstrated a maximum specific capacitance of 125.1 F g ^−1 in a three-electrode system and a maximum capacitance of 53.3% at 30 A g ^−1 . This article provides a new strategy for the preparation of CAMs with high specific surface area by using linear PI precursor and SiO _2 support skeleton

    Breaking 10% Efficiency in Semitransparent Solar Cells with Fused-Undecacyclic Electron Acceptor

    No full text
    A fused-undecacyclic electron acceptor IUIC has been designed, synthesized and applied in organic solar cells (OSCs) and semitransparent organic solar cells (ST-OSCs). In comparison with its counterpart, fused-heptacyclic ITIC4, IUIC with a larger π-conjugation and a stronger electron-donating core exhibits a higher LUMO level (IUIC: −3. 87 eV vs ITIC4: −3.97 eV), 82 nm red-shifted absorption with larger extinction coefficient and smaller optical bandgap, and higher electron mobility. Thus, IUIC-based OSCs show higher values in open-circuit voltage, short-circuit current density, and thereby much higher power conversion efficiency (PCE) than those of the ITIC4-based counterpart. The as-cast OSCs based on PTB7-Th: IUIC without any extra treatment yield PCEs of up to 11.2%, higher than that of the control devices based on PTB7-Th: ITIC4 (8.18%). The as-cast ST-OSCs based on PTB7-Th: IUIC without any extra treatment afford PCEs of up to 10.2% with an average visible transmittance (AVT) of 31%, higher than those of the control devices based on PTB7-Th: ITIC4 (PCE = 6.42%, AVT = 28%)

    Efficient all-small-molecule organic solar cells processed with non-halogen solvent

    No full text
    Abstract All-small-molecule organic solar cells with good batch-to-batch reproducibility combined with non-halogen solvent processing show great potential for commercialization. However, non-halogen solvent processing of all-small-molecule organic solar cells are rarely reported and its power conversion efficiencies are very difficult to improve. Herein, we designed and synthesized a small molecule donor BM-ClEH that can take advantage of strong aggregation property induced by intramolecular chlorine-sulfur non-covalent interaction to improve molecular pre-aggregation in tetrahydrofuran and corresponding micromorphology after film formation. Tetrahydrofuran-fabricated all-small-molecule organic solar cells based on BM-ClEH:BO-4Cl achieved high power conversion efficiencies of 15.0% in binary device and 16.1% in ternary device under thermal annealing treatment. In contrast, weakly aggregated BM-HEH without chlorine-sulfur non-covalent bond is almost inefficient under same processing conditions due to poor pre-aggregation induced disordered π-π stacking, indistinct phase separation and exciton dissociation. This work promotes the development of non-halogen solvent processing of all-small-molecule organic solar cells and provides further guidance

    Polymer Fiber Rigid Network with High Glass Transition Temperature Reinforces Stability of Organic Photovoltaics

    No full text
    Highlights A unique approach is proposed: constructing a polymer fiber rigid network with high glass transition temperature. Frozen bulk heterojunction morphology impeded deterioration of exciton quenching, charge transport, and charge extraction properties during thermal aging.  The strategy is universal and can be further optimized for enhanced thermal stability and improved mechanical resilience

    Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors

    No full text
    Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di­(thiophen-2-yl)­ethane-substituted (TVT-substituted) benzo­[1,2-b:4,5-b′]­dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC<sub>71</sub>BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors
    corecore