89,248 research outputs found
Hyperspherical Close-Coupling Calculation of D-wave Positronium Formation and Excitation Cross Sections in Positron-Hydrogen Scattering
Hyperspherical close-coupling method is used to calculate the elastic,
positronium formation and excitation cross sections for positron collisions
with atomic hydrogen at energies below the H(n=4) threshold for the J=2 partial
wave. The resonances below each inelastic threshold are also analyzed. The
adiabatic hyperspherical potential curves are used to identify the nature of
these resonances.Comment: 12 pages(in a TeX file) +8 Postscript figure
States of Local Moment Induced by Nonmagnetic Impurities in Cuprate Superconductors
By using a model Hamiltonian with d-wave superconductivity and competing
antiferromagnetic (AF) orders, the local staggered magnetization distribution
due to nonmagnetic impurities in cuprate superconductors is investigated. From
this, the net magnetic moment induced by a single or double impurities can be
obtained. We show that the net moment induced by a single impurity corresponds
to a local spin with S_z=0, or 1/2 depending on the strength of the AF
interaction and the impurity scattering. When two impurities are placed at the
nearest neighboring sites, the net moment is always zero. For two unitary
impurities at the next nearest neighboring sites, and at sites separated by a
Cu-ion site, the induced net moment has S_z=0, or 1/2, or 1. The consequence of
these results on experiments will be discussed.Comment: 4 pages, 4 figure
Strain-induced energy band gap opening in two-dimensional bilayered silicon film
This work presents a theoretical study of the structural and electronic
properties of bilayered silicon films under in-plane biaxial strain/stress
using density functional theory. Atomic structures of the two-dimensional
silicon films are optimized by using both the local-density approximation and
generalized gradient approximation. In the absence of strain/stress, five
buckled hexagonal honeycomb structures of the bilayered silicon film have been
obtained as local energy minima and their structural stability has been
verified. These structures present a Dirac-cone shaped energy band diagram with
zero energy band gaps. Applying tensile biaxial strain leads to a reduction of
the buckling height. Atomically flat structures with zero bucking height have
been observed when the AA-stacking structures are under a critical biaxial
strain. Increase of the strain between 10.7% ~ 15.4% results in a band-gap
opening with a maximum energy band gap opening of ~168.0 meV obtained when
14.3% strain is applied. Energy band diagram, electron transmission efficiency,
and the charge transport property are calculated.Comment: 18 pages, 5 figures, 1 tabl
Compressibility of Interacting Electrons in Bilayer Graphene
Using the renormalized-ring-diagram approximation, we study the
compressibility of the interacting electrons in bilayer graphene. The
compressibility is equivalent to the spin susceptibility apart from a constant
factor. The chemical potential and the compressibility of the electrons can be
significantly altered by an energy gap (tunable by external gate voltages)
between the valence and conduction bands. For zero gap and a typical finite gap
in the experiments, we show both systems are stable.Comment: 5 pages, 6 figure
Absence of broken inversion symmetry phase of electrons in bilayer graphene under charge density fluctuations
On a lattice model, we study the possibility of existence of gapped broken
inversion symmetry phase (GBISP) of electrons with long-range Coulomb
interaction in bilayer graphene using both self-consistent Hartree-Fock
approximation (SCHFA) and the renormalized-ring-diagram approximation (RRDA).
RRDA takes into account the charge-density fluctuations beyond the mean field.
While GBISP at low temperature and low carrier concentration is predicted by
SCHFA, we show here the state can be destroyed by the charge-density
fluctuations. We also present a numerical algorithm for calculating the
self-energy of electrons with the singular long-range Coulomb interaction on
the lattice model.Comment: 8 pages, 6 figure
Study of two-dimensional electron systems in the renormalized-ring-diagram approximation
With a super-high-efficient numerical algorithm, we are able to
self-consistently calculate the Green's function in the
renormalized-ring-diagram approximation for a two-dimensional electron system
with long-range Coulomb interactions. The obtained ground-state energy is found
to be in excellent agreement with that of the Monte Carlo simulation. The
numerical results of the self-energy, the effective mass, the distribution
function, and the renormalization factor of the Green's function for the
coupling constants in the range are also presented.Comment: 4 pages, 5 figure
- …