Absence of broken inversion symmetry phase of electrons in bilayer graphene under charge density fluctuations


On a lattice model, we study the possibility of existence of gapped broken inversion symmetry phase (GBISP) of electrons with long-range Coulomb interaction in bilayer graphene using both self-consistent Hartree-Fock approximation (SCHFA) and the renormalized-ring-diagram approximation (RRDA). RRDA takes into account the charge-density fluctuations beyond the mean field. While GBISP at low temperature and low carrier concentration is predicted by SCHFA, we show here the state can be destroyed by the charge-density fluctuations. We also present a numerical algorithm for calculating the self-energy of electrons with the singular long-range Coulomb interaction on the lattice model.Comment: 8 pages, 6 figure

    Similar works

    Full text


    Available Versions