5,402 research outputs found

    Meso-scale modelling of 3D woven composite T-joints with weave variations

    Get PDF
    A meso-scale modelling framework is proposed to simulate the 3D woven fibre architectures and the mechanical performance of the composite T-joints, subjected to quasi-static tensile pull-off loading. The proposed method starts with building the realistic reinforcement geometries of the 3D woven T-joints at the mesoscale, of which the modelling strategy is applicable for other types of geometries with weave variations at the T-joint junction. Damage modelling incorporates both interface and constituent material damage, in conjunction with a continuum damage mechanics approach to account for the progressive failure behaviour. With a voxel based cohesive zone model, the proposed method is able to model mode I delamination based on the voxel mesh technique, which has advantages in meshing. Predicted results are in good agreement with experimental data beyond initial failure, in terms of load-displacement responses, failure events, damage initiation and propagation. The significant effect of fibre architecture variations on mechanical behaviour is successfully predicted through this modelling method without any further correlation of input parameters in damage model. This predictive method will facilitate the design and optimisation of 3D woven T-joint preforms

    Modelling the impacts of pasture contamination and stocking rate for the development of targeted selective treatment strategies for Ostertagia ostertagi infection in calves

    Get PDF
    A simulation study was carried out to assess whether variation in pasture contamination or stocking rate impact upon the optimal design of targeted selective treatment (TST) strategies. Two methods of TST implementation were considered: 1) treatment of a fixed percentage of a herd according to a given phenotypic trait, or 2) treatment of individuals that exceeded a threshold value for a given phenotypic trait. Four phenotypic traits, on which to base treatment were considered: 1) average daily bodyweight gain, 2) faecal egg count, 3) plasma pepsinogen, or 4) random selection. Each implementation method (fixed percentage or threshold treatment) and determinant criteria (phenotypic trait) was assessed in terms of benefit per R (BPR), the ratio of average benefit in weight gain to change in frequency of resistance alleles R (relative to an untreated population). The impact of pasture contamination on optimal TST strategy design was investigated by setting the initial pasture contamination to 100, 200 or 500 O. ostertagi L3/kg DM herbage; stocking rate was investigated at a low (3calves/ha), conventional (5 calves/ha) or high (7 calves/ha) stocking rates. When treating a fixed percentage of the herd, treatments according to plasma pepsinogen or random selection were identified as the most beneficial (i.e. resulted in the greatest BPR) for all levels of initial pasture contamination and all stocking rates. Conversely when treatments were administered according to threshold values ADG was most beneficial, and was identified as the best TST strategy (i.e. resulted in the greatest overall BPR) for all levels of initial pasture contamination and all stocking rates
    • …
    corecore