321 research outputs found

    Metal-Free Flat Lens Using Negative Refraction by Nonlinear Four-wave Mixing

    Full text link
    A perfect lens with unlimited resolution has always posed a challenge to both theoretical and experimental physicists. Recent developments in optical meta-materials promise an attractive approach towards perfect lenses using negative refraction to overcome the diffraction limit, improving resolution. However, those artificially engineered meta-materials usually company by high losses from metals and are extremely difficult to fabricate. An alternative proposal using negative refraction by four-wave mixing has attracted much interests recently, though most of existing experiments still require metals and none of them has been implemented for an optical lens. Here we experimentally demonstrate a metal-free flat lens for the first time using negative refraction by degenerate four-wave mixing with a thin glass slide. We realize optical lensing effect utilizing a nonlinear refraction law, which may have potential applications in microscopy

    An Infectious Disease Prediction Method Based on K-Nearest Neighbor Improved Algorithm

    Get PDF
    With the continuous development of medical information construction, the potential value of a large amount of medical information has not been exploited. Excavate a large number of medical records of outpatients, and train to generate disease prediction models to assist doctors in diagnosis and improve work efficiency.This paper proposes a disease prediction method based on k-nearest neighbor improvement algorithm from the perspective of patient similarity analysis. The method draws on the idea of clustering, extracts the samples near the center point generated by the clustering, applies these samples as a new training sample set in the K-nearest neighbor algorithm; based on the maximum entropy The K-nearest neighbor algorithm is improved to overcome the influence of the weight coefficient in the traditional algorithm and improve the accuracy of the algorithm. The real experimental data proves that the proposed k-nearest neighbor improvement algorithm has better accuracy and operational efficiency

    Dynamical properties of piecewise-smooth stochastic models

    Get PDF
    PhDPiecewise-smooth stochastic systems are widely used in engineering science. However, the theory of these systems is only in its infancy. In this thesis, we take as an example the Brownian motion with dry friction to illustrate dynamical properties of these systems with respect to three interesting topics: (i) weak-noise approximations, (ii) first-passage time (FPT) problems and (iii) functionals of stochastic processes. Firstly, we investigate the validity and accuracy of weak-noise approximations for piecewise-smooth stochastic differential equations (SDEs), taking as an illustrative example the Brownian motion with pure dry friction. For this model, we show that the weak-noise approximation of the path integral correctly reproduces the known propagator of the SDE at lowest order in the noise power, as well as the main features of the exact propagator with higher-order corrections, provided that the singularity of the path integral is treated with some heuristics. We also consider a smooth regularisation of this piecewise-constant SDE and study to what extent this regularisation can rectify some of the problems encountered in the non-smooth case. Secondly, we provide analytic solutions to the FPT problem of the Brownian motion with dry friction. For the pure dry friction case, we find a phase transition phenomenon in the spectrum which relates to the position of the exit point and affects the tail of the FPT distribution. For the model with dry and viscous friction, we evaluate quantitatively the impact of the corresponding stick-slip transition and of the transition to ballistic exit. We also derive analytically the distributions of the maximum velocity till the FPT for the dry friction model. Thirdly, we generalise the so-called backward Fokker-Planck technique and obtain a recursive ordinary differential equation for the moments of functionals in the Laplace space. We then apply the developed results to analyse the local time, the occupation time and the displacement of the dry friction model. Finally, we conclude this thesis and state some related unsolved problems.Chinese Scholarship Counci
    • …
    corecore