36 research outputs found

    ALADIN is Required for the Production of Fertile Mouse Oocytes

    Get PDF
    Asymmetric cell divisions depend on the precise placement of the spindle apparatus. In mammalian oocytes, spindles assemble close to the cell's center, but chromosome segregation takes place at the cell periphery where half of the chromosomes are expelled into small, nondeveloping polar bodies at anaphase. By dividing so asymmetrically, most of the cytoplasmic content within the oocyte is preserved, which is critical for successful fertilization and early development. Recently we determined that the nucleoporin ALADIN participates in spindle assembly in somatic cells, and we have also shown that female mice homozygously null for ALADIN are sterile. In this study we show that this protein is involved in specific meiotic stages, including meiotic resumption, spindle assembly, and spindle positioning. In the absence of ALADIN, polar body extrusion is compromised due to problems in spindle orientation and anchoring at the first meiotic anaphase. ALADIN null oocytes that mature far enough to be fertilized in vitro are unable to support embryonic development beyond the two-cell stage. Overall, we find that ALADIN is critical for oocyte maturation and appears to be far more essential for this process than for somatic cell divisions

    Human plasma protein N-glycosylation

    Full text link

    Expression of p-STAT3 in human colorectal adenocarcinoma and adenoma; correlation with clinicopathological factors

    No full text
    Background: The signal transducer and activator of transcription 3 (STAT3) is a key signalling molecule implicated in the regulation of growth and malignant transformation. Constitutive activation of STAT3 is seen in several tumour derived cell lines, and in a wide variety of human malignancies. Aims: To examine the relation between p-STAT3 (activated form of STAT3) expression and clinicopathological factors in human colorectal adenocarcinoma and adenoma. Methods: Immunohistochemical analyses were carried out on tissues from 44 colorectal adenomas and 95 colorectal adenocarcinomas, comprising 18 intramucosal carcinomas and 77 invasive carcinomas. Results: Seventy seven of these 139 samples (55.4%) showed immunoreactivity for p-STAT3. Positive staining for p-STAT3 was seen in 69 of the 95 carcinomas. Only eight of the 44 adenomas showed immunopositivity for p-STAT3, resulting in a significant difference between total adenocarcinomas and adenomas (p < 0.001). Among the 95 cases of colorectal adenocarcinoma, p-STAT3 immunoreactivity was significantly correlated with the depth of tumour invasion (p < 0.05), venous invasion (p < 0.05), lymph node metastasis (p < 0.05), and increasing stages of the Dukes’ classification (p < 0.01). Expression of p-STAT3 was detected by Western blot analysis in two different cultured human colorectal carcinoma cell lines and six colon carcinoma tissue samples obtained at surgery. Conclusion: This is the first study to report a significant correlation of p-STAT3 expression with the depth of tumour invasion. These findings suggest that p-STAT3 expression is an important factor related to carcinogenesis and/or tumour invasion of colorectal adenocarcinoma
    corecore