24 research outputs found

    Allele-specific binding of ZFP57 in the epigenetic regulation of imprinted and non-imprinted monoallelic expression.

    Get PDF
    BACKGROUND: Selective maintenance of genomic epigenetic imprints during pre-implantation development is required for parental origin-specific expression of imprinted genes. The Kruppel-like zinc finger protein ZFP57 acts as a factor necessary for maintaining the DNA methylation memory at multiple imprinting control regions in early mouse embryos and embryonic stem (ES) cells. Maternal-zygotic deletion of ZFP57 in mice presents a highly penetrant phenotype with no animals surviving to birth. Additionally, several cases of human transient neonatal diabetes are associated with somatic mutations in the ZFP57 coding sequence. RESULTS: Here, we comprehensively map sequence-specific ZFP57 binding sites in an allele-specific manner using hybrid ES cell lines from reciprocal crosses between C57BL/6J and Cast/EiJ mice, assigning allele specificity to approximately two-thirds of all binding sites. While half of these are biallelic and include endogenous retrovirus (ERV) targets, the rest show monoallelic binding based either on parental origin or on genetic background of the allele. Parental-origin allele-specific binding is methylation-dependent and maps only to imprinting control differentially methylated regions (DMRs) established in the germline. We identify a novel imprinted gene, Fkbp6, which has a critical function in mouse male germ cell development. Genetic background-specific sequence differences also influence ZFP57 binding, as genetic variation that disrupts the consensus binding motif and its methylation is often associated with monoallelic expression of neighboring genes. CONCLUSIONS: The work described here uncovers further roles for ZFP57-mediated regulation of genomic imprinting and identifies a novel mechanism for genetically determined monoallelic gene expression.The authors acknowledge support from the Wellcome Trust, BBSRC, and EU FP7 Initial Training Networks INGENIUM (Marie-Curie Action 290123) and EpiHealthNet (Marie Curie Action 317146).This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13059-015-0672-

    Planetary period magnetic field oscillations in Saturn's magnetosphere: Postequinox abrupt nonmonotonic transitions to northern system dominance

    Get PDF
    [1] We examine the “planetary period” magnetic field oscillations observed in the “core” region of Saturn's magnetosphere (dipole L ≤ 12), on 56 near‐equatorial Cassini periapsis passes that took place between vernal equinox in August 2009 and November 2012. Previous studies have shown that these consist of the sum of two oscillations related to the northern and southern polar regions having differing amplitudes and periods that had reached near‐equal amplitudes and near‐converged periods ~10.68 h in the interval to ~1 year after equinox. The present analysis shows that an interval of strongly differing behavior then began ~1.5 years after equinox, in which abrupt changes in properties took place at ~6‐ to 8‐month intervals, with three clear transitions occurring in February 2011, August 2011, and April 2012, respectively. These are characterized by large simultaneous changes in the amplitudes of the two systems, together with small changes in period about otherwise near‐constant values of ~10.63 h for the northern system and ~10.69 h for the southern (thus, not reversed postequinox) and on occasion jumps in phase. The first transition produced a resumption of strong southern system dominance unexpected under northern spring conditions, while the second introduced comparably strong northern system dominance for the first time in these data. The third resulted in suppression of all core oscillations followed by re‐emergence of both systems on a time scale of ~85 days, with the northern system remaining dominant but not as strongly as before. This behavior poses interesting questions for presently proposed theoretical scenarios

    Risk assessment of assisted reproductive technology and parental age at childbirth for the development of uniparental disomy-mediated imprinting disorders caused by aneuploid gametes

    No full text
    Abstract Background Our previous study suggested that assisted reproductive technology (ART) may be a possible risk factor for the development of epimutation-mediated imprinting disorders (epi-IDs) for mothers aged ≥ 30 years. However, whether ART or advanced parental age facilitates the development of uniparental disomy-mediated IDs (UPD-IDs) has not yet been investigated. Results We enrolled 130 patients with aneuploid UPD-IDs including various IDs confirmed by molecular studies and obtained ART data of the general population and patients with epi-IDs from a robust nationwide database and our previous report, respectively. We compared the proportion of ART-conceived livebirths and maternal childbearing age between patients with UPD-IDs and the general population or patients with epi-IDs. The proportion of ART-conceived livebirths in patients with aneuploid UPD-IDs was consistent with that in the general population of maternal age ≥ 30 years and was lower than that in the patients with epi-IDs, although there was no significant difference. The maternal childbearing age of patients with aneuploid UPD-IDs was skewed to the increased ages with several cases exceeding the 97.5th percentile of maternal childbearing age of the general population and significantly higher than that of patients with epi-IDs (P < 0.001). In addition, we compared the proportion of ART-conceived livebirths and parental age at childbirth between patients with UPD-IDs caused by aneuploid oocytes (oUPD-IDs) and that by aneuploid sperm (sUPD-IDs). Almost all ART-conceived livebirths were identified in patients with oUPD-IDs, and both maternal age and paternal age at childbirth were significantly higher in patients with oUPD-IDs than in patients with sUPD-IDs. Because maternal age and paternal age were strongly correlated (r s  = 0.637, P < 0.001), higher paternal age in oUPD-IDs was explained by the higher maternal age in this group. Conclusions Different from the case of epi-IDs, ART itself is not likely to facilitate the development of aneuploid UPD-IDs. We demonstrated that advanced maternal age can be a risk factor for the development of aneuploid UPD-IDs, particularly oUPD-IDs

    Dynamics of transcription-mediated conversion from euchromatin to facultative heterochromatin at the Xist promoter by Tsix

    No full text
    The fine-scale dynamics from euchromatin (EC) to facultative heterochromatin (fHC) has remained largely unclear. Here, we focus on Xist and its silencing initiator Tsix as a paradigm of transcription-mediated conversion from EC to fHC. In mouse epiblast stem cells, induction of Tsix recapitulates the conversion at the Xist promoter. Investigating the dynamics reveals that the conversion proceeds in a stepwise manner. Initially, a transient opened chromatin structure is observed. In the second step, gene silencing is initiated and dependent on Tsix, which is reversible and accompanied by simultaneous changes in multiple histone modifications. At the last step, maintenance of silencing becomes independent of Tsix and irreversible, which correlates with occupation of the −1 position of the transcription start site by a nucleosome and initiation of DNA methylation introduction. This study highlights the hierarchy of multiple chromatin events upon stepwise gene silencing establishment.ISSN:2666-3864ISSN:2211-124
    corecore