279 research outputs found

    Comparison with model-independent and dependent analyses for pion charge radius

    Full text link
    Traditionally, there has been a method to extract the charge radius of a hadron based on the fits of its form factor with some model assumptions. In contrast, a completely different method has been proposed, which does not depend on the models. In this report, we explore several improvements to this model-independent method for analyzing the pion charge radius. Furthermore, we compare the results of the pion charge radius obtained from Nf=2+1N_{f}=2+1 lattice QCD data at mπ=0.51m_{\pi}=0.51 GeV using the three different methods: the traditional model-dependent method, the original model-independent method, and our improved model-independent method. In this comparison, we take into account systematic errors estimated in each analysis.Comment: 7 pages, 4 figures, Proceedings of the 40th International Symposium on Lattice Field Theory (Lattice 2023), July 31st - August 4th, 2023, Fermi National Accelerator Laborator

    TLR2-Dependent Induction of IL-10 and Foxp3+CD25+CD4+ Regulatory T Cells Prevents Effective Anti-Tumor Immunity Induced by Pam2 Lipopeptides In Vivo

    Get PDF
    16 S-[2,3-bis(palmitoyl)propyl]cysteine (Pam2) lipopeptides act as toll-like receptor (TLR)2/6 ligands and activate natural killer (NK) cells and dendritic cells (DCs) to produce inflammatory cytokines and cytotoxic NK activity in vitro. However, in this study, we found that systemic injection of Pam2 lipopeptides was not effective for the suppression of NK-sensitive B16 melanomas in vivo. When we investigated the immune suppressive mechanisms, systemic injection of Pam2 lipopeptides induced IL-10 in a TLR2-dependent manner. The Pam2 lipopeptides increased the frequencies of Foxp3+CD4+ regulatory T (T reg) cells in a TLR2- and IL-10- dependent manner. The T reg cells from Pam2-lipopeptide injected mice maintained suppressor activity. Pam2 lipopeptides, plus the depletion of T reg with an anti-CD25 monoclonal antibody, improved tumor growth compared with Pam2 lipopeptides alone. In conclusion, our data suggested that systemic treatment of Pam2 lipopeptides promoted IL-10 production and T reg function, which suppressed the effective induction of anti-tumor immunity in vivo. It is necessary to develop an adjuvant that does not promote IL-10 and T reg function in vivo for the future establishment of an anti-cancer vaccine

    Characterization of CYP76M5–8 Indicates Metabolic Plasticity within a Plant Biosynthetic Gene Cluster

    Get PDF
    Recent reports have revealed genomic clustering of enzymatic genes for particular biosynthetic pathways in plant specialized/secondary metabolism. Rice (Oryza sativa) carries two such clusters for production of antimicrobial diterpenoid phytoalexins, with the cluster on chromosome 2 containing four closely related/homologous members of the cytochrome P450 CYP76M subfamily (CYP76M5–8). Notably, the underlying evolutionary expansion of these CYP appears to have occurred after assembly of the ancestral biosynthetic gene cluster, suggesting separate roles. It has been demonstrated that CYP76M7 catalyzes C11α-hydroxylation of ent-cassadiene, and presumably mediates an early step in biosynthesis of the derived phytocassane class of phytoalexins. Here we report biochemical characterization of CYP76M5, -6, and -8. Our results indicate that CYP76M8 is a multifunctional/promiscuous hydroxylase, with CYP76M5 and -7 seeming to provide only redundant activity, while CYP76M6 seems to provide both redundant and novel activity, relative to CYP76M8. RNAi-mediated double knockdown of CYP76M7 and -8 suppresses elicitor inducible phytocassane production, indicating a role for these monooxygenases in phytocassane biosynthesis. In addition, our data suggests that CYP76M5, -6, and -8 may play redundant roles in production of the oryzalexin class of phytoalexins as well. Intriguingly, the preceding diterpene synthase for oryzalexin biosynthesis, unlike that for the phytocassanes, is not found in the chromosome 2 diterpenoid biosynthetic gene cluster. Accordingly, our results not only uncover a complex evolutionary history, but also further suggest some intriguing differences between plant biosynthetic gene clusters and the seemingly similar microbial operons. The implications for the underlying metabolic evolution of plants are then discussed

    Offshore-origin warm water inflows toward Totten Ice Shelf, East Antarctica

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions: [OM] Polar Meteorology and Glaciology, Thu. 5 Dec. / 2F Auditorium , National Institute of Polar Researc

    microRNA-345の過剰発現は、MUC1およびTJP2の発現を抑制することにより、膵管腺癌細胞株の浸潤能に影響を及ぼす

    Get PDF
    The majority of pancreatic carcinomas are pancreatic ductal adenocarcinomas (PDAC), and the presence of non-invasive pancreatic intraepithelial neoplasia or intraductal papillary mucinous neoplasm, as an associated lesion, is considered important. These microscopic hyperplastic or grossly papillomatous lesions exhibit varying degrees of morphological atypia and may develop into invasive carcinomas. In this study, we investigated whether mucin-1 (MUC1) is involved in the progression of pancreatic carcinoma and examined the mechanisms by which microRNAs regulate MUC1 expression in vitro. In PDAC cell lines, suppression of MUC1 expression reduced cell proliferation and invasion; PDAC cell lines transfected with an miR-345 precursor suppressed the expression of MUC1, and reduced cell proliferation and invasion. Tight junction protein 2 (TJP2), a putative target of miR-345, is regulated by MUC1. The suppression of TJP2 expression reduced cell proliferation by inducing apoptosis. These results suggest that MUC1 and TJP2, the putative target molecules of miR-345, are critical in maintaining the invasive potential of pancreatic carcinoma cells, and regulating their expression may prevent the progression of non-invasive pancreatic intraductal lesions to invasive carcinomas. This study provides new insights for the development of novel molecular targeted therapies for pancreatic carcinomas.博士(医学)・甲第866号・令和5年3月15

    Identification of in vivo Essential Genes of Vibrio vulnificus for Establishment of Wound Infection by Signature-Tagged Mutagenesis

    Get PDF
    Vibrio vulnificus can cause severe necrotic lesions within a short time. Recently, it has been reported that the numbers of wound infection cases in healthy hosts are increasing, for which surgical procedures are essential in many instances to eliminate the pathogen owing to its rapid proliferation. However, the mechanisms by which V. vulnificus can achieve wound infection in healthy hosts have not been elucidated. Here, we advance a systematic understanding of V. vulnificus wound infection through genome-wide identification of the relevant genes. Signature-tagged mutagenesis (STM) has been developed to identify functions required for the establishment of infection including colonization, rapid proliferation, and pathogenicity. Previously, STM had been regarded to be unsuitable for negative selection to detect the virulence genes of V. vulnificus owing to the low colonization and proliferation ability of this pathogen in the intestinal tract and systemic circulation. Alternatively, we successfully identified the virulence genes by applying STM to a murine model of wound infection. We examined a total of 5418 independent transposon insertion mutants by signature-tagged transposon mutagenesis and detected 71 clones as attenuated mutants consequent to disruption of genes by the insertion of a transposon. This is the first report demonstrating that the pathogenicity of V. vulnificus during wound infection is highly dependent on its characteristics: flagellar-based motility, siderophore-mediated iron acquisition system, capsular polysaccharide, lipopolysaccharide, and rapid chromosome partitioning. In particular, these functions during the wound infection process and are indispensable for proliferation in healthy hosts. Our results may thus allow the potential development of new strategies and reagents to control the proliferation of V. vulnificus and prevent human infections

    Safety of pre-engraftment prophylactic foscarnet administration after allogeneic stem cell transplantation

    Get PDF
    Human herpesvirus-6 (HHV-6) is a major cause of limbic encephalitis with a dismal prognosis after allogeneic hematopoietic stem cell transplantation (SCT). Because our previous trial of preemptive therapy with foscarnet sodium (phosphonoformic acid; PFA) failed to prevent HHV-6 encephalitis, we conducted a prospective study to examine the safety of prophylactic PFA administration and elucidate the changes in the plasma HHV-6 DNA levels in the early post-SCT period. Plasma HHV-6 DNA was measured thrice weekly from day 6. PFA, 90mg/kg/day, was administered from days 7 to 21 after bone marrow or peripheral blood SCT and to day 25 after umbilical cord blood transplantation. Of the 10 patients enrolled, 2 dropped out of the study, 1 because of early death, and 1 with a low glomerular filtration rate. Grade 3 or greater adverse events occurred in 9 of the 10 prophylactic PFA patients and in 7 of the 10 control patients who had clinical backgrounds similar to the study subjects and underwent SCT during the same period. Neurological disorders developed in none of the study subjects but in 4 of the 10 control patients, including 2 with HHV-6 encephalitis. HHV-6 reactivation occurred in 3 of the 10 study subjects. The prophylactic PFA regimen was thus safe and it may reduce the risk of limbic encephalitis, but is not considered to be potent enough to prevent HHV-6 reactivation. (C) 2011 John Wiley & Sons A/S
    corecore