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We report a 19-year-old Vietnamese woman who experienced several life-threatening

bleeding events, including ovarian hemorrhage. Blood analysis revealed a decreased

fibrinogen level with markedly elevated fibrinogen/fibrin degradation products and

D-dimer levels. Despite hemostatic surgery and administration of several medications, such

as nafamostat mesylate, tranexamic acid, and unfractionated heparin, the coagulation

abnormalities were not corrected, and the patient experienced repeated hemorrhagic

events. We found that administration of recombinant human thrombomodulin (rhTM)

remarkably improved the patient’s pathophysiology. Screening and sequencing of the TM

gene (THBD) revealed a previously unreported homozygous variation: c.793T.A

(p.Cys265Ser). Notably, the Cys265 residue forms 1 of 3 disulfide bonds in the epidermal

growth factor (EGF)–like domain 1 of TM. Transient expression experiments using COS-1

cells demonstrated markedly reduced expression of TM-Cys265Ser on the plasma mem-

brane relative to wild-type TM. The TM-Cys265Ser mutant was intracellularly degraded,

probably because of EGF-like domain 1 misfolding. The reduced expression of TM on the

endothelial cell membrane may be responsible for the disseminated intravascular-

coagulation–like symptoms observed in the patient. In summary, we identified a novel TM

variant, c.793T.A (p.Cys265Ser). Patients homozygous for this variant may present with

severe bleeding events; rhTM should be considered a possible treatment option for these

patients.

Introduction

Thrombomodulin (TM) is a single-chain type 1 transmembrane glycoprotein encoded by the TM gene
(THBD) and predominantly expressed on the surface of vascular endothelial cells.1 The mature form of
human TM has 557 amino-acid residues constituting 10 elements: the N-terminal C-type lectinlike domain,
6 epidermal growth factor (EGF)-like domains, a serine/threonine-rich region, a transmembrane domain, and
a short cytoplasmic tail.2–4 The most crucial function of TM is the regulation of coagulation and fibrinolysis.
Several other functions, including anti-inflammatory effects through inhibition of complement activity and
neutrophil adhesion, have also been described.5
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Key Points

� A patient homozygous
for THBD c.793T.A
(p.Cys265Ser) devel-
oped life-threatening
bleeding.

� Recombinant human
thrombomodulin mark-
edly improved
symptoms associated
with severe bleeding.
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When thrombin binds directly to TM, the thrombin-TM complex accel-
erates the activation of protein C (PC) more than 1000-fold relative to
thrombin alone, and activated PC exerts anticoagulant activity.6,7 The
thrombin-TM complex also activates thrombin-activatable fibrinolysis
inhibitor (TAFI), inhibiting fibrin degradation catalyzed by plasmin
and whose catalytic efficiency is 1250-fold higher than that of throm-
bin alone.8

Previous animal studies have indicated that a reduction in TM function
can trigger thrombotic events. Although complete TM-deficient mice
die before birth, the heterozygous null Thbd (TM1/2) allele or mutant
Thbd (TMGlu404Pro/2) is not always lethal in mice; however, they pro-
duce a hypercoagulable state.9–12 In humans, several genetic poly-
morphisms in THBD have been reported, with some possibly
related to thrombotic diseases, including myocardial infarction, malig-
nant hypertension, and atypical hemolytic uremic syndrome.13–15

Recombinant human soluble TM (rhTM) comprises 498 amino-acid
residues derived from TM extracellular domains. rhTM binds to circu-
lating thrombin molecules, inhibiting their procoagulant activity and
promoting PC activation.16,17 Besides, it inhibits inflammation and
organ injury by degrading the high-mobility group box 1 protein to
its proinflammatory form.18 rhTM has been approved in Japan to treat
disseminated intravascular coagulation (DIC), associated with sepsis.

In the present study, we found a previously unreported homozygous
c.793T.A (p.Cys265Ser) THBD variant in a Vietnamese patient
who presented with a hemorrhagic episode of unknown etiology.
We describe the cause of coagulation defects in this patient and clar-
ify why rhTM infusion was an effective treatment.

Methods

DNA extraction and PCR amplicon sequencing

Genomic DNA was extracted from whole-blood samples from the
proband, her parents, and brother, by using an Illustra blood genomic-
Prep Mini Spin Kit (Cytiva, Tokyo, Japan). The open reading frame
(1728 bp in 1 exon) and flanking regions of THBD were amplified
by polymerase chain reaction, with 3 primer pairs (CACTTA-
TAAACTCGAGCCCTGG and AAGTGGAACTCGCAGAGGAAG,
CGTCGCTGTCTCCGCTGCTGA and GGCACTGGTACTCG-
CAGTTG, and CACTGCTACCCTAACTACGACCT and
TAAGGTGCTTTGGTAGCAAAGCTG). Polymerase chain reaction
products were sequenced in both directions with a Big-Dye Termina-
tor v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA)
and an Applied Biosystems 3500xL Genetic Analyzer (Life Technol-
ogies, Tokyo, Japan). Written informed consent was obtained from
the patient and her family, in agreement with the Declaration of
Helsinki.

Construction of expression vectors

The wild-type (WT) THBD coding region was amplified from human
genomic DNA and tagged with a C-terminal His tag using Phusion
Hot Start Flex 2X Master Mix (New England Biolabs, Ipswich, MA)
and cloned into the pCI mammalian expression vector (Promega,
Madison, WI). The Cys265-to-Ser (C265S) mutant was generated
by site-directed mutagenesis. Sequences were verified using the
3500xL Genetic Analyzer (Applied Biosystems).

Cell culture and transfection

COS-1 cells in 60-mm dishes were transiently transfected with each
expression vector by using Lipofectamine 3000 (ThermoFisher Scien-
tific, Waltham, MA). Cells were cultured in Dulbecco’s modified
Eagle’s medium (Wako Pure Chemical, Osaka, Japan) supplemented
with 10% fetal bovine serum for 16 to 48 hours. Cell membranes were
fractionated with the Minute Plasma Membrane Protein Isolation Kit
(Invent Biotechnologies, Plymouth, MN). To determine whether the
C265S mutant is degraded by endoplasmic reticulum (ER)–associ-
ated degradation (ERAD), transfected cells (16 hours) were incu-
bated in 3 mM epoxomicin for 11 hours.

Western blot analysis

Proteins in cell lysates and various fractions were subjected to sodium
dodecyl sulfate-polyacrylamide (5%–20% gradient) gel electrophore-
sis (SDS-PAGE) in reducing conditions and transferred to a polyviny-
lidene fluoride membrane (Bio-Rad, Hercules, CA). After the reaction
was blocked with 5% skim milk, the membrane was incubated with
anti-His tag monoclonal antibody-horse radish peroxidase (MBL,
Nagoya, Japan) for 2 hours. Chemiluminescence signals were
detected and quantified using ImmobilonWestern Chemiluminescent
HRP Substrate (Millipore, Billerica, MA) and a LAS-3000 Imager (Fuji-
film, Tokyo, Japan).

PC activation assay

Transfected cells (24 hours) were washed twice with ice-cold assay
buffer (20 mM 4-[2-hydroxyethyl]-1-piperazineethanesulfonic acid,
150 mM NaCl, 5 mM CaCl2 [pH 7.4]), scraped into 1 mL of assay
buffer, pelleted at 3000g for 3 minutes, and gently resuspended in
100 mL of assay buffer. A 10-mL aliquot of the resultant sample was
incubated with 0.5 mM human PC (Haematologic Technologies,
Essex Junction, VT) and 5 nM human thrombin (Haematologic Tech-
nologies) for 30 minutes at 37�C. The reaction was stopped by the
addition of 150 mg/mL antithrombin (Haematologic Technologies)
and 150 U/mL heparin. The amidolytic effect of activated PC was
assayed with 200 mM chromogenic substrate S-2366 (Chromogenix,
Milano, Italy), and hydrolysis of S-2366 was quantitated by measuring
the absorbance spectrophotometrically at 405 nm. A standard curve
was generated using thrombomodulin wild-type (TM-WT), and activity
was normalized to total protein levels quantitatively stained in-gel with
GelCode Blue Stain Reagent (ThermoFisher Scientific).

TAFI activation assay

Membrane suspensions of transfected cells were prepared as in the
PC activation experiments. A 10-mL aliquot of the resultant sample
was incubated with 0.375 mM human TAFI and 1.36 nM human
thrombin (both from Haematologic Technologies) for 10 min at
37�C. The reaction was stopped by adding 5 mL of 1.6 mM D-phenyl-
alanyl-prolyl-arginyl chloromethyl ketone (Cayman Chemical, Ann
Arbor, MI). Then, 10 mL of the reaction mixture was mixed with 5 mL
of 30 mM hippuryl-L-arginine (Peptide Institute, Osaka, Japan) and
incubated for 45 minutes at 37�C. After the incubation, 100 mL of
0.25 mM phosphate buffer (pH 8.3) and 75 mL of 3% cyanuric chlo-
ride in 1.4-dioxane were added and mixed well. The sample was cen-
trifuged at 9100g for 10 minutes. The supernatant (100 mL) was
transferred to a 96-well plate, and absorbance at 405 nm was mea-
sured. A standard curve was generated using TM-WT, and activity
was normalized to total protein levels quantitatively stained in-gel
with GelCode Blue Stain Reagent.
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Statistical analysis

Data are presented as means 6 standard deviation (SD). Student t
tests were performedwith Prism 8.0 (GraphPad Software, SanDiego,
CA). A difference of P , .05 was considered to be statistically
significant.

Results

Case presentation

A 19-year-old Vietnamese woman developed an acute onset of
inferior abdominal pain and was referred to the gynecology depart-
ment of the hospital of origin. Her parents were not consanguine-
ous, and her mother did not have a spontaneous abortion. She had
no family history of bleeding or thrombosis disorders, and neither
her family members nor relatives exhibited immunodeficiency
symptoms. Further, the patient did not have a history of any chronic
inflammatory disease.

Laboratory tests of the patient on the day of referral showed severe
anemia, thrombocytopenia, and marked coagulation abnormalities:
hemoglobin, 6.3 g/dL; platelet count, 100 3 103/mL ; prothrombin
time, 16.5 seconds; activated partial thromboplastin time .150 sec-
onds; fibrinogen, ,40 g/dL; fibrinogen/fibrin degradation products
(FDPs), 152.9 mg/mL; and D-dimer, 47.6 mg/mL (Table 1 ). A com-
puted tomographic scan of the abdomen and pelvis showed heavy
bleeding from the left ovary; subsequently, the patient underwent
emergency hemostatic surgery and received a massive blood
transfusion.

The laboratory findings on the day of admission at the referral hos-
pital (day 1) suggested that the patient had DIC after the hemor-
rhage. Intravenous nafamostat mesylate and unfractionated
heparin were promptly started after surgery to manage DIC;

however, these treatments were seemingly ineffective upon labora-
tory investigation (Figure 1A). On day 6 after admission, the patient
developed acute abdominal pain again and was diagnosed with
intra-abdominal hemorrhage. Another emergency hemostatic sur-
gery was performed; however, the operation failed to identify the
exact source of bleeding, and subsequent venous cauterization
also failed to stop the bleeding completely. The bleeding was even-
tually stopped using massive fresh frozen plasma (FFP) and con-
centrated platelet transfusion.

After the second surgery, rhTM, was administered IV in doses of 380
U/kg once daily for 1 week, leading to a marked improvement of the
hemostatic profile: specifically, increased fibrinogen levels and
decreased FDP and D-dimer levels (Figure 1B). However, after
rhTM withdrawal on day 14, the laboratory coagulation profile deteri-
orated. Therefore, the patient was diagnosed with a hematological
anomaly of undefined origin and was transferred to Tokyo Saiseikai
Central Hospital on day 16 for further evaluation.

On admission to our hospital, laboratory analysis revealed low fibrino-
gen levels with markedly elevated FDP and D-dimer levels (Figure 1B).
More in-depth coagulation examination showed a high plasmin-a2-
plasmin-inhibitor complex (21.6 mg/mL) with decreased antiplasmin
activity (63%), suggesting severe fibrinolysis (Table 1 ). The patient
reported that, during her childhood, bleeding was difficult to stop after
injury.

We administered tranexamic acid and nafamostat mesylate from day
16. However, neither drug was effective; thus, a large FFP transfusion
was administered. These treatments were discontinued on day 28,
owing to the appearance of deep vein thrombosis in the legs.
Although fibrinogen concentrate had been tested several times, it
did not improve the abnormal coagulation. Owing to the apparent ben-
efit of rhTM treatment at the referring hospital, we restarted daily rhTM

Table 1. Laboratory data

Variable Reference range On presentation, referring hospital (day 1) On presentation, our hospital (day 16)

WBC count (3103/mL) 4.0-9.0 18.2 3.9

Hemoglobin (g/dL) 11.5-15.0 6.3 10.5

Platelet count (3104/mm3) 15.0-35.0 10.0 37.6

PT (s) 10-13 16.5 10.2

APTT (s) 26-40 .150 26.3

Fibrinogen (g/dL) 160-400 ,40 284

Antithrombin III (%) 80-130 68.5 68.5

FDP (mg/mL) 0-5.0 152.9 115

D-dimer (mg/mL) 0-1.0 47.6 45.9

Soluble fibrin monomer complex (FU/mL) ,6.1 — .250

Antiplasmin (%) 80-120 — 63

PIC (mg/mL) ,5.0 — 21.6

TAT (mg/mL) 0-3.0 — 36.8

PC activity (%) 70-140 — 123

Protein S activity (%) 65-140 — 164

sTM (FU/mL) 1.8-3.9 — .32

APTT, activated partial thromboplastin time; PIC, plasmin inhibitor complex; PT, prothrombin.
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Figure 1. Blood investigation trends. (A) Changes in levels of key blood factors after massive FFP transfusion and hemostatic surgery on day 1 (D1). The patient had a second

intra-abdominal hemorrhage on day 6 (D6), requiring another emergency hemostatic surgery. Eighteen units of FFP were also administered after the hemorrhage. (B) Changes in

fibrinogen, FDP, and D-dimer levels after rhTM infusions (380 U/kg) administered IV once daily from days 7 through 9 and days 11 through 14. After rhTM infusions were stopped,

nafamostat mesylate and tranexamic acid (TA) were administered beginning on day 16. Large FFP transfusions occurred daily from days 17 through 20. (C) The effect of continued

nafamostat mesylate and TA treatment followed by reinfusion with rhTM on the levels of coagulation factors over time. On day 36, the daily dosing interval of rhTM was extended to

every 2 to 3 days. (D) Changes in levels of key blood coagulation factors followed by infusion with rhTM from days 29 through 34. UFH, unfractionated heparin.
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infusion on day 30, which produced a marked improvement in coag-
ulation status (Figure 1C-D). These results suggested that rhTM
was the only irreplaceable therapeutic agent for this patient; thus,
we continued to administer rhTM intermittently to maintain her fibrino-
gen level.

On day 42, we started to extend the daily interval of rhTM treatments
to 2 to 3 per day with daily laboratory monitoring; however, on day 76,
the patient had sudden abdominal pain and went into shock. She was
diagnosed with massive bleeding from the right ovary; thus, an

emergency ovariectomy for hemostasis was successfully performed.
After this bleeding event, the patient received rhTM infusions every
2 to 3 days to maintain her blood fibrinogen level above 200 mg/dL.

A novel, rare THBD variation and a common

polymorphism

Two missense variants, c.793T.A (p.Cys265Ser) and c.1418C.T
(p.Ala473Val), were identified in THBD of the proband (Figure 2).
To the best of our knowledge, the c.793T.A variant has not

Thrombomodulin (THBD)

Nt CtLectin-like EGF1 EGF2 EGF3 EGF4 EGF5 EGF6 STR

tm
Ala473Cys265

F

T/A*

C/T# C/T#T#/T# T#/T#

T/A* A*/A*T/T

M B P
p.Cys265Ser

c.793T>A
(p.Cys265Ser)

c.1418C>T
(p.Ala473Val)

p.Cys265Ser

p.Cys265Ser
p.Cys265Ser

Figure 2. Structure of the thrombomodulin gene (THBD) and identification of 2 missense variants in the patient and her parents. The c.793T.A substitution

causes the p.Cys265Ser missense substitution in EGF-like domain 1, and c.1418C.T causes p.Ala473Val in EGF-like domain 6. The patient’s parents were both heterozygous

for the c.793T.A variant, whereas her brother did not carry it. Nt, N terminus; STR, Ser/Thr-rich domain; tm, transmembrane domain; Ct, C terminus; F, father; M, mother; B,

brother; P, proband. *Novel variation. #Common polymorphism.
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been reported. The c.1418C.T variant is a common polymorphism
with an allele frequency of �15% and 29%, worldwide and in East
Asian populations, respectively, according to the public database
gnomAD v3.19

The patient’s parents were both heterozygous for the c.793T.A var-
iant, suggesting that the variant alleles were inherited. Her brother did
not carry the c.793T.A variant. As the symptomatic proband was the
only homozygote for c.793T.A in the family, this is a candidate for the
cause of the recessive coagulation disorder of the proband.

C265S reduced cell surface expression

To assess the effect of c.793T.A (p.Cys265Ser) substitution on TM
expression, we expressed recombinant TM-WT and -C265S proteins
in COS-1 cells and performed western blot analysis (Figure 3A). In
total cell lysates, TM-WT proteins were observed as an upper main
band (�90 kDa) and lower band (�80 kDa), presumably representing
the mature (glycosylated) and nonglycosylated forms, respectively
(Figure 3A lane 2). The C265S mutant exhibited a reduced level of
the top band and an increased level of the bottom band (Figure 3A
lane 3), suggesting that a substantial fraction of the mutant TM protein
could not be converted to or remained in the mature form. Cell frac-
tionation revealed that plasma membrane expression of TM in the
C265S mutant was significantly reduced (24.2% 6 14.3%; P 5
.012) relative to that in the WT (Figure 3A lanes 11, 12; Figure 3B).

Plasma membrane proteins, including TM, are synthesized and folded in
the ER. The cellular ERAD system degrades unfolded or misfolded pro-
teins accumulated in the ER. When cells expressing the TM C265S
mutant were treated with the selective proteasome inhibitor epoxomicin,
the lower molecular weight TM band further accumulated (Figure 4 lane
2), especially in the organelle fraction (lane 6). Thus, the C265S variant
TM was likely to be degraded by ERAD, probably because of the mis-
folding of the EGF-like domain 1 containing the substituted residue.

To assess the functional impact of the C265S mutation, the PC and
TAFI activation activities of TM-WT and -C265S proteins were assayed
by using transfected cell membranes. The PC activation activity of
C265S on the cell surface was significantly reduced (34.9% 6
7.7%; P5 .0013) relative to that of theWT (Figure 5A). The TAFI acti-
vation activity of C265S on the cell surface was also significantly
reduced (27.6% 6 10.1%; P 5 .0010; Figure 5B). These data were
consistent with the results showing that the expression of C265S on
the plasma membrane was reduced (Figure 3). The data also sug-
gested that the C265S mutant protein on the cell surface retains its
native specific activity as a cofactor in the thrombin-mediated PC and
TAFI activation. Under the experimental condition, nontransfected cells
were not detected in PC and TAFI activation assays (data not shown).
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Discussion

The patient claimed that bleeding had been difficult to stop when
injured on several occasions throughout her childhood. These experi-
ences suggested that congenital or genetic problems caused her fre-
quent bleeding episodes. A mutation in fibrinogen genes was
suspected initially but seemed unlikely, because her laboratory data
showed no response to transfusion of FFP or fibrinogen concentrate.
There were also no data suggesting congenital coagulation diseases,
such as coagulation factor deficiency and von Willebrand disease.
Because rhTM appeared to be effective in treating her disease, we
hypothesized the existence of genetic anomalies in her THBD. Indeed,
we discovered an unreported THBD variation, c.793T.A
(p.Cys265Ser). We also found that both of her parents were hetero-
zygous for this variant, but that it was absent in her brother. From these
genetic data and the marked improvement in the coagulation abnor-
mality with rhTM administration, we concluded that the several mas-
sive bleeding events that she had experienced were linked to the
C265S variant homozygosity. Of note, based on the absence of hem-
orrhagic events in the parents, this allele appeared to be recessive.

Although we failed to measure her soluble TM (sTM) levels at baseline,
we have data from day 40, 4 days after the latest rhTM infusion. Consid-
ering the pharmacokinetics (Cmax, 807 ng/mL; t1/2, 16.2 hours) of rhTM
in patients without renal dysfunction, her sTM level at day 40 (.32 FU
/mL) was considered to include not only infused rhTM (estimated to be
�0.08 FU/mL) but also her endogenous TM. Although the exact trigger
that caused the ectodomain shedding of endogenous TM is unknown, it
could be due to a certain inflammatory state latent in the patient.20

Results from previous studies with Thbd-null mice indicated that
homozygosity for a Thbd-null allele was fatal9; however, this was not
the case for our patient with the homozygous THBD variant. We
observed partial expression of the TM-C265S mutant on the cell sur-
face in vitro. These results indicated that this variant remained func-
tionally normal to some extent.

Among the several structural consequences of TM, its anticoagulation
and antifibrinolysis activities are primarily associated with EGF-like
domains. For instance, the thrombin anion-binding exosite 1 binds to
EGF5-6 of TM. EGF4-6 is essential and sufficient for PC cleavage
and activation,1,21,22 whereas TM activity for TAFI activation resides
in EGF3-6.2,23 The biological and clinical significance of the EGF1
domain, including Cys265, has yet to be elucidated. Given that the
replaced residue is not associated with EGF3-6, the C265S mutant
is likely to activate PCand TAFI normally once expressed on the cell sur-
face. In our investigation, the cell surface expression of the TM-C265S
mutant decreased because of its degradation by ERAD, concomitantly
reducing its ability to activate PC and TAFI. The decreased activation of
PC may have caused this patient’s deep vein thrombosis, and the
decreased activation of TAFI may have caused a hyperfibrinolytic state,
leading to some of her hemorrhagic events.

Mice carrying a homozygous Glu404Pro mutation, located in the loop
between the EGF4 and EGF5 domains, can be born normally,
although there is a 1000-fold reduction in TM activation of PC com-
pared with that in WT mice.24 On the other hand, 40% of TMLoxP/lacZ-
Cre

tg

-carrying mice die in the embryonic phase because of placental
defects.25,26 According to Isermann et al,27 placental defects in
TM-deficient mice were caused by cell death and growth inhibition
of placental trophoblast cells. They stated that not only fibrin, but
also subsequent FDP may lead to the death of giant trophoblast cells.

Reduced TAFI activation ability in TM-deficient mice may cause more
fibrin degradation, resulting in placental defects.

In contrast to these mouse models, the clinical symptoms of the
patient in this study were characterized by recurrent hemorrhage, indi-
cating that TM-C265S mainly causes hyperfibrinolysis rather than
hypercoagulation. The C265S mutation may disrupt the timely and
delicate balance between coagulation and fibrinolysis.

Ovulation may have triggered her bleeding because the bleeding
occurred when her basal body temperature rose. However, it is
hard to know why the bleeding became severe on this occasion.
The corpus luteum becomes cystic and filled with blood after ovula-
tion. Rupture of the corpus luteum is rare in healthy women but can
sometimes cause life-threatening intraperitoneal hemorrhage in
women taking anticoagulants or having bleeding disorders.28

Although infertility treatment, sexual intercourse, ovarian cysts, or pol-
yps can trigger severe ovulation bleeding, this patient had none of
them. In the ovary, TM reportedly functions in the optimal luteinization
of preovulatory follicles by mediating thrombin and protease-activated
receptors (PAR1 and PAR4).29 The TM C265S mutation in this
patient may affect not only the balance between coagulation and fibri-
nolysis but also other biological functions, such as intracellular signal-
ing pathways, through PAR1/PAR4 receptors.

A case with different homozygous THBD variants was recently
reported by Okada et al.30 In their report, a 6-month-old male patient
with a homozygous TM-Gly412Asp variant developed recurrent sub-
cutaneous bleeding related to coagulation-fibrinolysis system abnor-
malities, which were markedly improved by rhTM infusion. Unlike our
patient, the TM-Gly412Asp missense variation was in the EGF5
domain of TM, producing a lack of thrombin binding and failing to acti-
vate PC and TAFI in vitro. These findingsmay explain why this patient’s
bleeding symptoms occurred earlier during childhood and appeared
to be more severe than those of our patient.

Two other THBD variants were reported to be associated with bleed-
ing: c.1611C.A (p.Cys537*)31 and c.1487delC (p.Pro496
Argfs*10).32 Heterozygous patients with these variants showed con-
tinuously elevated sTM levels in the plasma related to incomplete
C-terminal structures of TM, resulting in reduced thrombin generation
and bleeding events. In contrast, patients with the c.793T.A
(p.Cys265Ser) variant showed symptoms only when homozygous,
not when heterozygous. It is unlikely that the Cys265 mutation in
EGF1 enhances the shedding of TM-like mutations of Cys537 in
the transmembrane domain and of Pro496 in the serine/threonine-
rich region. The elevation of sTM in the patient with p.Cys265Ser
may not be the cause of the bleeding symptoms, but rather the result
of endothelial damage related to imbalance of the coagulation-
fibrinolysis system associated with reduced expression of endothelial
TM. In fact, rhTM infusionwas very effective for this patient. A limitation
of this study is that we did not have plasma samples of the patient
before the rhTM infusion, so we could not confirm that sTM was
not constitutively elevated in the absence of symptoms.

In summary, we have identified a previously unreported THBD variant,
c.793T.A (p.Cys265Ser). A patient homozygous for c.793T.A
(p.Cys265Ser) presented with severe bleeding that was controlled
with rhTM infusion. The decreased cell surface expression of the
TM-C265S variant may tilt the balance between coagulation and fibri-
nolysis. A TM disorder should be investigated when bleeding of uncer-
tain etiology occurs.
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