147 research outputs found

    On cosmic-ray production efficiency at supernova remnant shocks propagating into realistic diffuse interstellar medium

    Get PDF
    Using three-dimensional magnetohydrodynamics simulations, we show that the efficiency of cosmic-ray (CR) production at supernova remnants (SNRs) is over-predicted if it could be estimated based on proper motion measurements of Hα\alpha filaments in combination with shock-jump conditions. Density fluctuations of upstream medium make shock waves rippled and oblique almost everywhere. The kinetic energy of the shock wave is transferred into that of downstream turbulence as well as thermal energy which is related to the shock velocity component normal to the shock surface. Our synthetic observation shows that the CR acceleration efficiency as estimated from a lower downstream plasma temperature, is overestimated by 10-40%, because rippled shock does not immediately dissipate all upstream kinetic energy.Comment: 7 pages, 3 figures, 1 table, accepted for publication in ApJ; the paper with full resolution images is http://www.phys.aoyama.ac.jp/~ryo/papers/shimoda2015.pd

    Evolution of Synchrotron X-rays in Supernova Remnants

    Full text link
    A systematic study of the synchrotron X-ray emission from supernova remnants (SNRs) has been conducted. We selected a total of 12 SNRs whose synchrotron X-ray spectral parameters are available in the literature with reasonable accuracy, and studied how their luminosities change as a function of radius. It is found that the synchrotron X-ray luminosity tends to drop especially when the SNRs become larger than ~5 pc, despite large scatter. This may be explained by the change of spectral shape caused by the decrease of the synchrotron roll-off energy. A simple evolutionary model of the X-ray luminosity is proposed and is found to reproduce the observed data approximately, with reasonable model parameters. According to the model, the total energy of accelerated electrons is estimated to be 10^(47-48) ergs, which is well below the supernova explosion energy. The maximum energies of accelerated electrons and protons are also discussed.Comment: 6 pages, 2 figures, ApJ, in pres

    Suzaku Observation of the RCW86 Northeastern Shell

    Full text link
    This paper reports the Suzaku results on the northeast shell of RCW 86. With the spatial and spectral analysis, we separated the X-rays into three distinct components; low (kT_e~0.3keV) and high (kT_e~1.8keV) temperature plasmas and a non-thermal component, and discovered their spatial distributions are different from each other. The low temperature plasma is dominated at the east rim, whereas the non-thermal emission is the brightest at the northeast rim which is spatially connected from the east rim. The high temperature plasma, found to contain the ~6.42keV line (K alpha of low-ionized iron), is enhanced at the inward region with respect to the east rim and has no spatial correlation with the non-thermal X-ray (the northeast). The Fe-Kalpha line, therefore, is not related to the non-thermal emission but originates from Fe-rich ejecta heated to the high temperatures by the reverse shock. Since the metal abundances of the low temperature plasma are sub-solar, the most possible origin of this component is interstellar medium heated by a blast wave. The non-thermal X-ray, which has a power-law index of ~2.8, is likely to be synchrotron emission. A possible scenario to explain these morphologies and spectra is: A fast moving blast wave in a thin cavity of OB association collided with a dense interstellar medium or cloud at the east region very recently. As the result, the reverse shock in this interior decelerated, and arrived at the Fe-rich region of the ejecta and heated it. In the northeast rim, on the other hand, the blast wave is still moving fast, and accelerated high energy electrons to emit synchrotron X-rays.Comment: 13 pages, 5 figures (9 figure files), accepted for publication in PAS

    Observational constraints on the maximum energies of accelerated particles in supernova remnants

    Full text link
    Supernova remnants (SNRs) are thought to be the most plausible sources of Galactic cosmic rays. One of the principal questions is whether they are accelerating particles up to the maximum energy of Galactic cosmic rays (∼\simPeV). In this paper, we summarize our recent studies on gamma-ray-emitting SNRs. We first evaluated the reliability of SNR age estimates to quantitatively discuss time dependence of their acceleration parameters. Then we systematically modeled their gamma-ray spectra to constrain the acceleration parameters. The current maximum energy estimates were found to be well below PeV for most sources. The basic time dependence of the maximum energy assuming the Sedov evolution (≈t−0.8±0.2\approx t^{-0.8\pm0.2}) cannot be explained with the simplest acceleration condition (Bohm limit) and requires shock-ISM (interstellar medium) interaction. The inferred maximum energies during lifetime averaged over the sample can be expressed as ≲20\lesssim 20 TeV (tM/1 kyr)−0.8t_{{\rm M}}/\text{1 kyr})^{-0.8} with tMt_{\rm M} being the age at the maximum, which reaches ∼\simPeV only if tM≲10t_{\rm M} \lesssim 10 yr. The maximum energies during lifetime are suggested to have a variety of 1-2 orders of magnitude from object to object on the other hand. This variety will reflect the dependence on environments.Comment: 6 pages, 4 figures, proceedings of 7th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy (Gamma 2022

    TeV Gamma-Rays from Old Supernova Remnants

    Get PDF
    We study the emission from an old supernova remnant (SNR) with an age of around 10^5 yrs and that from a giant molecular cloud (GMC) encountered by the SNR. When the SNR age is around 10^5 yrs, proton acceleration is efficient enough to emit TeV gamma-rays both at the shock of the SNR and that in the GMC. The maximum energy of primarily accelerated electrons is so small that TeV gamma-rays and X-rays are dominated by hadronic processes, pi^0-decay and synchrotron radiation from secondary electrons, respectively. However, if the SNR is older than several 10^5 yrs, there are few high-energy particles emitting TeV gamma-rays because of the energy loss effect and/or the wave damping effect occurring at low-velocity isothermal shocks. For old SNRs or SNR-GMC interacting systems capable of generating TeV gamma-ray emitting particles, we calculated the ratio of TeV gamma-ray (1-10 TeV) to X-ray (2-10 keV) energy flux and found that it can be more than ~10^2. Such a source showing large flux ratio may be a possible origin of recently discovered unidentified TeV sources.Comment: 10 pages, 6 figures, 2 tables, MNRAS in pres

    X-Ray Observation of Very High Energy Gamma-Ray Source, HESS J1745-303, with Suzaku

    Full text link
    Suzaku observations of a TeV unidentified (unID) source, HESS J1745-303, are presented. A possible excess of neutral iron line emission is discovered, and is likely associated with the main part of HESS J1745-303, named "region A". It may be an X-ray reflection nebula where the X-rays from previous Galactic Center (GC) activity are reflected by a molecular cloud. This result further strengthens the assumption that the molecular cloud which is spatially coincident with region A of HESS J1745-303 is located in the GC region. The TeV emission from molecular clouds is reminiscent of the diffuse TeV gamma-rays from the GC giant molecular clouds, and it could have the same emission mechanism. With deep exposure mapping observations by Suzaku, a tight upper-limit on the 2-10 keV continuum diffuse emission from region A is obtained, as 2.1x10^-13ergs s^-1cm^-2. The flux ratio between 1-10 TeV and 2-10 keV is larger than 4. Possible scenarios to reproduce wide-band spectra from keV to TeV are examined. Thermal X-rays from nearby two old supernova remnants, G359.0-0.9 and G359.1-0.5, are detected, and their emission properties are well determined in the present study with deep exposure.Comment: 18 pages, 14 figures, ApJ accepte
    • …
    corecore