1,573 research outputs found

    Lower cerebrospinal fluid/plasma fibroblast growth factor 21 (FGF21) ratios and placental FGF21 production in gestational diabetes

    Get PDF
    Objectives: Circulating Fibroblast Growth Factor 21 (FGF21) levels are increased in insulin resistant states such as obesity, type 2 diabetes mellitus and gestational diabetes mellitus (GDM). In addition, GDM is associated with serious maternal and fetal complications. We sought to study human cerebrospinal fluid (CSF) and corresponding circulating FGF21 levels in women with gestational diabetes mellitus (GDM) and in age and BMI matched control subjects. We also assessed FGF21 secretion from GDM and control human placental explants. Design: CSF and corresponding plasma FGF21 levels of 24 women were measured by ELISA [12 GDM (age: 26–47 years, BMI: 24.3–36.3 kg/m2) and 12 controls (age: 22–40 years, BMI: 30.1–37.0 kg/m2)]. FGF21 levels in conditioned media were secretion from GDM and control human placental explants were also measured by ELISA. Results: Glucose, HOMA-IR and circulating NEFA levels were significantly higher in women with GDM compared to control subjects. Plasma FGF21 levels were significantly higher in women with GDM compared to control subjects [234.3 (150.2–352.7) vs. 115.5 (60.5–188.7) pg/ml; P<0.05]. However, there was no significant difference in CSF FGF21 levels in women with GDM compared to control subjects. Interestingly, CSF/Plasma FGF21 ratio was significantly lower in women with GDM compared to control subjects [0.4 (0.3–0.6) vs. 0.8 (0.5–1.6); P<0.05]. FGF21 secretion into conditioned media was significantly lower in human placental explants from women with GDM compared to control subjects (P<0.05). Conclusions: The central actions of FGF21 in GDM subjects maybe pivotal in the pathogenesis of insulin resistance in GDM subjects. The significance of FGF21 produced by the placenta remains uncharted and maybe crucial in our understanding of the patho-physiology of GDM and its associated maternal and fetal complications. Future research should seek to elucidate these points

    Phosphorylation of estrogen receptor α serine 167 is predictive of response to endocrine therapy and increases postrelapse survival in metastatic breast cancer

    Get PDF
    INTRODUCTION: Endocrine therapy is the most important treatment option for women with hormone-receptor-positive breast cancer. The potential mechanisms for endocrine resistance involve estrogen receptor (ER)-coregulatory proteins and crosstalk between ER and other growth factor signaling networks. However, the factors and pathways responsible for endocrine resistance are still poorly identified. METHODS: Using immunohistochemical techniques, we focused on the expression and phosphorylation of hormone receptors themselves and examined the phosphorylation of ER-α Ser118 and ER-α Ser167 and the expression of ER-α, ER-β1, ER-βcx/β2, progesterone receptor (PR), PRA, and PRB in the primary breast carcinomas of 75 patients with metastatic breast cancer who received first-line treatment with endocrine therapy after relapse. RESULTS: Phosphorylation of ER-α Ser118, but not Ser167, was positively associated with overexpression of HER2, and HER2-positive tumors showed resistance to endocrine therapy. The present study has shown for the first time that phosphorylation of ER-α Ser167, but not Ser118, and expression of PRA and PRB, as well as ER-α and PR in primary breast tumors are predictive of response to endocrine therapy, whereas expression of ER-β1 and ER-βcx/β2 did not affect response to the therapy. In addition, patients with either high phosphorylation of ER-α Ser167, or high expression of ER-α, PR, PRA, or PRB had a significantly longer survival after relapse. CONCLUSION: These data suggest that phosphorylation of ER-α Ser167 is helpful in selecting patients who may benefit from endocrine therapy and is a prognostic marker in metastatic breast cancer

    Epigenetics as a mechanism driving polygenic clinical drug resistance

    Get PDF
    Aberrant methylation of CpG islands located at or near gene promoters is associated with inactivation of gene expression during tumour development. It is increasingly recognised that such epimutations may occur at a much higher frequency than gene mutation and therefore have a greater impact on selection of subpopulations of cells during tumour progression or acquisition of resistance to anticancer drugs. Although laboratory-based models of acquired resistance to anticancer agents tend to focus on specific genes or biochemical pathways, such 'one gene : one outcome' models may be an oversimplification of acquired resistance to treatment of cancer patients. Instead, clinical drug resistance may be due to changes in expression of a large number of genes that have a cumulative impact on chemosensitivity. Aberrant CpG island methylation of multiple genes occurring in a nonrandom manner during tumour development and during the acquisition of drug resistance provides a mechanism whereby expression of multiple genes could be affected simultaneously resulting in polygenic clinical drug resistance. If simultaneous epigenetic regulation of multiple genes is indeed a major driving force behind acquired resistance of patients' tumour to anticancer agents, this has important implications for biomarker studies of clinical outcome following chemotherapy and for clinical approaches designed to circumvent or modulate drug resistance

    Gauge-Higgs Dark Matter

    Full text link
    When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining accidental discrete symmetry. Noting that in the gauge-Higgs unification scenario, introduction of anti-periodic fermions is well-motivated by a phenomenological reason, we investigate dark matter physics in the scenario. As an example, we consider a five-dimensional SO(5)\timesU(1)_X gauge-Higgs unification model compactified on the S1/Z2S^1/Z_2 with the warped metric. Due to the structure of the gauge-Higgs unification, interactions between the dark matter particle and the Standard Model particles are largely controlled by the gauge symmetry, and hence the model has a strong predictive power for the dark matter physics. Evaluating the dark matter relic abundance, we identify a parameter region consistent with the current observations. Furthermore, we calculate the elastic scattering cross section between the dark matter particle and nucleon and find that a part of the parameter region is already excluded by the current experimental results for the direct dark matter search and most of the region will be explored in future experiments.Comment: 16 pages, 2 figure

    The Origin Recognition Complex Interacts with a Subset of Metabolic Genes Tightly Linked to Origins of Replication

    Get PDF
    The origin recognition complex (ORC) marks chromosomal sites as replication origins and is essential for replication initiation. In yeast, ORC also binds to DNA elements called silencers, where its primary function is to recruit silent information regulator (SIR) proteins to establish transcriptional silencing. Indeed, silencers function poorly as chromosomal origins. Several genetic, molecular, and biochemical studies of HMR-E have led to a model proposing that when ORC becomes limiting in the cell (such as in the orc2-1 mutant) only sites that bind ORC tightly (such as HMR-E) remain fully occupied by ORC, while lower affinity sites, including many origins, lose ORC occupancy. Since HMR-E possessed a unique non-replication function, we reasoned that other tight sites might reveal novel functions for ORC on chromosomes. Therefore, we comprehensively determined ORC “affinity” genome-wide by performing an ORC ChIP–on–chip in ORC2 and orc2-1 strains. Here we describe a novel group of orc2-1–resistant ORC–interacting chromosomal sites (ORF–ORC sites) that did not function as replication origins or silencers. Instead, ORF–ORC sites were comprised of protein-coding regions of highly transcribed metabolic genes. In contrast to the ORC–silencer paradigm, transcriptional activation promoted ORC association with these genes. Remarkably, ORF–ORC genes were enriched in proximity to origins of replication and, in several instances, were transcriptionally regulated by these origins. Taken together, these results suggest a surprising connection among ORC, replication origins, and cellular metabolism

    Clinical significance of the reduced expression of G protein gamma 7 (GNG7) in oesophageal cancer

    Get PDF
    We previously cloned human G protein gamma 7 (GNG7) and demonstrated that it was downregulated in gastrointestinal cancer. The significance of GNG7 expression in oesophageal cancer is unknown. TaqMan quantitative real-time PCR was performed to determine the clinical significance of GNG7 expression in 55 cases of oesophageal cancer. Furthermore, GNG7-transfected oesophageal cancer cells were analysed in laboratory studies at genomic and epigenetic levels. Twenty-seven patients with low GNG7 expression showed significantly poorer survival than did 28 patients with high expression (P<0.05). Tumours with low GNG7 expression invaded deeper than those with high GNG7 expression (P<0.05), both in vivo and in vitro. Eight tumours retained GNG7 expression, and they did not show either promoter hypermethylation or loss of heterozygosity (LOH). In 38 tumours with GNG7 suppression, 22 (57%) showed either LOH or promoter hypermethylation. In addition, GNG7 expression was significantly associated with the presence of miR328 in oesophageal cancer cell lines, which suggests that this microRNA might be a regulator of GNG7 expression. GNG7 suppression represents a new prognostic indicator in cases of oesophageal cancer. GNG7 might be suppressed by LOH and promoter hypermethylation or by microRNA

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Chlamydia pneumoniae, heat shock proteins 60 and risk of secondary cardiovascular events in patients with coronary heart disease under special consideration of diabetes: a prospective study

    Get PDF
    BACKGROUND: There have been suggestions of an association between Chlamydia pneumoniae, chlamydial heat shock protein (Ch-hsp) 60 and human heat shock protein (h-hsp) 60 infection sero-status and development of secondary cardiovascular events. Patients with diabetes might be at higher risk since they are prone to infections. The objective of this study was to investigate prospectively the role of Chlamydia pneumoniae (CP), chlamydial heat shock protein (Ch-hsp) 60 and a possible intermediate role of human heat shock protein (h-hsp) 60 sero-status in the development of secondary cardiovascular disease (CVD) events in patients with coronary heart disease (CHD) under special consideration of diabetes mellitus. METHODS: Patients aged 30–70 undergoing an in-patient rehabilitation program after acute manifestation of coronary heart disease (International Classification of Disease, 9(th )Rev. pos. 410–414) between January 1999 and May 2000 in one of two participating rehabilitation clinics in Germany were included in this analysis. Chlamydia pneumoniae (CP), chlamydial heat shock protein (Ch-hsp) 60 and human heat shock protein (h-hsp) 60 status at baseline were measured by serum immunoglobulin G and A antibodies. Secondary CVD events (myocardial infarction, stroke, and cardiovascular death) were recorded during a mean follow-up period of 33.5 months (response = 87%). RESULTS: Among the 1052 subjects 37.4% and 39.3% were sero-positive to CP IgA and IgG respectively, 22.2% were sero-positive to Ch-hsp 60 IgG and 8.4% were positive to h-hsp 60 IgG at baseline. During follow-up, secondary CVD events occurred among 71 (6.8%) participants. Occurrence of a secondary CVD event was more common among CP (IgA) and CP (IgG) sero-positive than among sero-negative patients (p-values 0.04 and 0.1, respectively). The risk of secondary CVD events was increased among patients with both a positive CP sero-status and diabetes compared to infection negative, non-diabetic patients and in general, sero-positivity added a hazard to diabetes. The interaction term between infection sero-status and diabetes was not statistically significant. We were not able to show an intermediate role of human heat shock protein (h-hsp) 60 sero-status in the development of secondary CVD events in patients with CHD. CONCLUSION: Results from this cohort of 1052 patients with pre-existing CHD cannot exclude a possible moderate increase in risk of secondary CVD events among patients with a positive infection sero-status. However, our study showed no intermediate role of human heat shock protein (h-hsp) 60 sero-status in the development of secondary CVD events in patients with CHD. Larger studies or meta-analysis of multiple studies are needed to address the interaction between infection sero-status and diabetes with adequate power
    corecore