48 research outputs found

    Tubulointerstitial Nephritis and Uveitis Syndrome Associated with Renal Tryptaseand Chymase-positive Mast Cell Infiltration

    Get PDF
    We report the clinical course and immunohistochemical analysis of a patient who presented with tubulointerstitial nephritis and uveitis syndrome (TINU syndrome). The patient, a 40-year-old woman, was referred to our hospital with general fatigue and a slight fever from another hospital. Mast cells are closely related to the development of renal interstitial fibrosis in patients with glomerulonephritis. To determine the role of mast cells in renal interstitial injury in TINU patients, we performed immunohistochemical studies on renal biopsy specimens using anti-human tryptase and anti-human chymase antibodies specific for mast cells. Double immunostaining of tryptase and chymase was also performed in renal tissues. In double immunofluorescence, cells with both chymase and tryptase (MCtc) were marked in the regions of interstitial fibrosis in this patient. It appears that mast cells are one of the constitutive cells of interstitial fibrosis in patients with TINU syndrome

    Novel Characteristics of the Function and Induction of Murine p56 Family Proteinsâ–¿

    No full text
    The interferon-stimulated gene 56 (ISG56) family is induced strongly in response to virus infection, interferons (IFNs) and double-stranded RNA (dsRNA). In the mouse, this family comprises three members, ISG56, ISG54, and ISG49, which are clustered on chromosome 19 and encode the corresponding proteins p56, p54, and p49. Here, we report differential properties of these proteins and their distinct induction patterns in different cell types. All three murine proteins bound to the c-subunit of the translation initiation factor eIF3, but unlike the other members, p49 did not inhibit protein synthesis. Using a newly raised antibody, we demonstrated that both in vitro and in vivo, p49 expression was strongly induced by IFN, dsRNA, and Sendai virus. However, in kidney mesangial cells, as opposed to podocytes, encephalomyocarditis virus, vesicular stomatitis virus, or extracellular dsRNA did not induce any of the p56 family proteins, although they were robustly expressed after Sendai virus infection or dsRNA transfection. Furthermore, protein-specific differences in the regulation of p56 family members became evident in various leukocyte types: all three proteins were induced by IFN in T cells, but in B cells p56 and ISG56 mRNA could not be detected. Similarly, p56 was selectively uninducible in plasmacytoid dendritic cells, whereas in myeloid dendritic cells, all three family members were expressed. These results revealed novel cell type-, inducer-, and gene-specific regulation of the ISG56 family of genes

    A TRIF-Independent Branch of TLR3 Signaling

    No full text

    Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice.

    Get PDF
    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE

    Development of Physiologically Responsive Human iPSC-Derived Intestinal Epithelium to Study Barrier Dysfunction in IBD

    No full text
    In inflammatory bowel disease (IBD), the intestinal epithelium is characterized by increased permeability both in active disease and remission states. The genetic underpinnings of this increased intestinal permeability are largely unstudied, in part due to a lack of appropriate modelling systems. Our aim is to develop an in vitro model of intestinal permeability using induced pluripotent stem cell (iPSC)-derived human intestinal organoids (HIOs) and human colonic organoids (HCOs) to study barrier dysfunction. iPSCs were generated from healthy controls, adult onset IBD, and very early onset IBD (VEO-IBD) patients and differentiated into HIOs and HCOs. EpCAM+ selected cells were seeded onto Transwell inserts and barrier integrity studies were carried out in the presence or absence of pro-inflammatory cytokines TNFα and IFNγ. Quantitative real-time PCR (qRT-PCR), transmission electron microscopy (TEM), and immunofluorescence were used to determine altered tight and adherens junction protein expression or localization. Differentiation to HCO indicated an increased gene expression of CDX2, CD147, and CA2, and increased basal transepithelial electrical resistance compared to HIO. Permeability studies were carried out in HIO- and HCO-derived epithelium, and permeability of FD4 was significantly increased when exposed to TNFα and IFNγ. TEM and immunofluorescence imaging indicated a mislocalization of E-cadherin and ZO-1 in TNFα and IFNγ challenged organoids with a corresponding decrease in mRNA expression. Comparisons between HIO- and HCO-epithelium show a difference in gene expression, electrophysiology, and morphology: both are responsive to TNFα and IFNγ stimulation resulting in enhanced permeability, and changes in tight and adherens junction architecture. This data indicate that iPSC-derived HIOs and HCOs constitute an appropriate physiologically responsive model to study barrier dysfunction and the role of the epithelium in IBD and VEO-IBD

    Secreted sACE expressing mice cannot maintain normal blood pressure.

    No full text
    <p><b><i>A</i></b> The systolic blood pressure of age-matched adult mice (Ace-/-, Ace+/+, Ace+/− and TeS, as indicated) was measured using non-invasive, computerized tail-cuff plethysmography method. The systolic blood pressure (in mm Hg) was calculated using the mean daily blood pressure over a five day reading period (the number of mice is indicated as <i>n</i>; * <i>p</i><0.001 Ace+/− <i>vs</i> Ace-/- TeS/TeS). <b><i>B</i></b> Ace+/− and Ace-/- TeS/TeS (TeS) mice were subjected to radiotelemetric analyses for measurement of both systolic (SBP and diastolic blood pressure (DBP) (described in Experimental Procedures) and a mean blood pressure is represented for each group of mice (n, the number of mice from each group; * <i>p</i><0.001 Ace+/− <i>vs</i> Ace-/- TeS/TeS).</p
    corecore