850 research outputs found

    Chemicals Regulating Cardiomyocyte Differentiation

    Get PDF

    Extracellular vesicles synchronize cellular phenotypes of differentiating cells

    Get PDF
    細胞外小胞が細胞の分化を同調させる現象の発見. 京都大学プレスリリース. 2021-10-01.Cells act in unison when next to each other. 京都大学プレスリリース. 2021-10-01.During embryonic development, cells differentiate in a coordinated manner, aligning their fate decisions and differentiation stages with those of surrounding cells. However, little is known about the mechanisms that regulate this synchrony. Here we show that cells in close proximity synchronize their differentiation stages and cellular phenotypes with each other via extracellular vesicle (EV)-mediated cellular communication. We previously established a mouse embryonic stem cell (ESC) line harbouring an inducible constitutively active protein kinase A (CA-PKA) gene and found that the ESCs rapidly differentiated into mesoderm after PKA activation. In the present study, we performed a co-culture of Control-ESCs and PKA-ESCs, finding that both ESC types rapidly differentiated in synchrony even when PKA was activated only in PKA-ESCs, a phenomenon we named ‘Phenotypic Synchrony of Cells (PSyC)’. We further demonstrated PSyC was mediated by EVs containing miR-132. PKA-ESC-derived EVs and miR-132-containing artificial nano-vesicles similarly enhanced mesoderm and cardiomyocyte differentiation in ESCs and ex vivo embryos, respectively. PSyC is a new form of cell-cell communication mediated by the EV regulation of neighbouring cells and could be broadly involved in tissue development and homeostasis

    Therapeutic potential of clinical-grade human induced pluripotent stem cell-derived cardiac tissues

    Get PDF
    Objectives: To establish a protocol to prepare and transplant clinical-grade human induced pluripotent stem cell (hiPSC)-derived cardiac tissues (HiCTs) and to evaluate the therapeutic potential in an animal myocardial infarction (MI) model. Methods: We simultaneously differentiated clinical-grade hiPSCs into cardiovascular cell lineages with or without the administration of canonical Wnt inhibitors, generated 5- layer cell sheets with insertion of gelatin hydrogel microspheres (GHMs) (HiCTs), and transplanted them onto an athymic rat MI model. Cardiac function was evaluated by echocardiography and cardiac magnetic resonance imaging and compared with that in animals with sham and transplantation of 5-layer cell sheets without GHMs. Graft survival, ventricular remodeling, and neovascularization were evaluated histopathologically. Results: The administration of Wnt inhibitors significantly promoted cardiomyocyte (CM) (P < .0001) and vascular endothelial cell (EC) (P = .006) induction, which resulted in cellular components of 52.0 ± 6.1% CMs and 9.9 ± 3.0% ECs. Functional analyses revealed the significantly lowest left ventricular end-diastolic volume and highest ejection fraction in the HiCT group. Histopathologic evaluation revealed that the HiCT group had a significantly larger median engrafted area (4 weeks, GHM(-) vs HiCT: 0.4 [range, 0.2-0.7] mm² vs 2.2 [range, 1.8-3.1] mm²; P = .005; 12 weeks, 0 [range, 0-0.2] mm² vs 1.9 [range, 0.1-3.2] mm2; P = .026), accompanied by the smallest scar area and highest vascular density at the MI border zone. Conclusions: Transplantation of HiCTs generated from clinical-grade hiPSCs exhibited a prominent therapeutic potential in a rat MI model and may provide a promising therapeutic strategy in cardiac regenerative medicine

    Decomposition of meron configuration of SU(2) gauge field

    Full text link
    For the meron configuration of the SU(2) gauge field in the four dimensional Minkowskii spacetime, the decomposition into an isovector field \bn, isoscalar fields ρ\rho and σ\sigma, and a U(1) gauge field CμC_{\mu} is attained by solving the consistency condition for \bn. The resulting \bn turns out to possess two singular points, behave like a monopole-antimonopole pair and reduce to the conventional hedgehog in a special case. The CμC_{\mu} field also possesses singular points, while ρ\rho and σ\sigma are regular everywhere.Comment: 18 pages, 5 figures, Sec.4 rewritten. 5 refs. adde

    eSPRESSO: topological clustering of single-cell transcriptomics data to reveal informative genes for spatio–temporal architectures of cells

    Get PDF
    [Background] Bioinformatics capability to analyze spatio–temporal dynamics of gene expression is essential in understanding animal development. Animal cells are spatially organized as functional tissues where cellular gene expression data contain information that governs morphogenesis during the developmental process. Although several computational tissue reconstruction methods using transcriptomics data have been proposed, those methods have been ineffective in arranging cells in their correct positions in tissues or organs unless spatial information is explicitly provided. [Results] This study demonstrates stochastic self-organizing map clustering with Markov chain Monte Carlo calculations for optimizing informative genes effectively reconstruct any spatio–temporal topology of cells from their transcriptome profiles with only a coarse topological guideline. The method, eSPRESSO (enhanced SPatial REconstruction by Stochastic Self-Organizing Map), provides a powerful in silico spatio–temporal tissue reconstruction capability, as confirmed by using human embryonic heart and mouse embryo, brain, embryonic heart, and liver lobule with generally high reproducibility (average max. accuracy = 92.0%), while revealing topologically informative genes, or spatial discriminator genes. Furthermore, eSPRESSO was used for temporal analysis of human pancreatic organoids to infer rational developmental trajectories with several candidate ‘temporal’ discriminator genes responsible for various cell type differentiations. [Conclusions] eSPRESSO provides a novel strategy for analyzing mechanisms underlying the spatio–temporal formation of cellular organizations

    Therapeutic angiogenesis by transplantation of induced pluripotent stem cell-derived Flk-1 positive cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Induced pluripotent stem (iPS) cells are the novel stem cell population induced from somatic cells. It is anticipated that iPS will be used in the expanding field of regenerative medicine. Here, we investigated whether implantation of fetal liver kinase-1 positive (Flk-1<sup>+</sup>) cells derived from iPS cells could improve angiogenesis in a mouse hind limb model of ischemia.</p> <p>Results</p> <p>Flk-1<sup>+ </sup>cells were induced from iPS cells after four to five days of culture. Hind limb ischemia was surgically induced and sorted Flk-1<sup>+ </sup>cells were directly injected into ischemic hind limbs of athymic nude mice. Revascularization of the ischemic hind limb was accelerated in mice that were transplanted with Flk-1<sup>+ </sup>cells compared with control mice, which were transplanted with vehicle, as evaluated by laser Doppler blood flowmetry. Transplantation of Flk-1<sup>+ </sup>cells also increased expression of VEGF mRNA in ischemic tissue compared to controls.</p> <p>Conclusions</p> <p>Direct local implantation of iPS cell-derived Flk-1<sup>+ </sup>cells would salvage tissues from ischemia. These data indicate that iPS cells could be valuable in the therapeutic induction of angiogenesis.</p

    Induction and Enhancement of Cardiac Cell Differentiation from Mouse and Human Induced Pluripotent Stem Cells with Cyclosporin-A

    Get PDF
    Induced pluripotent stem cells (iPSCs) are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC) and iPSC differentiation system in which cardiovascular cells can be systematically induced from Flk1+ common progenitor cells, and identified highly cardiogenic progenitors as Flk1+/CXCR4+/VE-cadherin− (FCV) cells. We have also reported that cyclosporin-A (CSA) drastically increases FCV progenitor and cardiomyocyte induction from mouse ESCs. Here, we combined these technologies and extended them to mouse and human iPSCs. Co-culture of purified mouse iPSC-derived Flk1+ cells with OP9 stroma cells induced cardiomyocyte differentiation whilst addition of CSA to Flk1+ cells dramatically increased both cardiomyocyte and FCV progenitor cell differentiation. Spontaneously beating colonies were obtained from human iPSCs by co-culture with END-2 visceral endoderm-like cells. Appearance of beating colonies from human iPSCs was increased approximately 4.3 times by addition of CSA at mesoderm stage. CSA-expanded human iPSC-derived cardiomyocytes showed various cardiac marker expressions, synchronized calcium transients, cardiomyocyte-like action potentials, pharmacological reactions, and ultra-structural features as cardiomyocytes. These results provide a technological basis to obtain functional cardiomyocytes from iPSCs

    Efficient and Scalable Purification of Cardiomyocytes from Human Embryonic and Induced Pluripotent Stem Cells by VCAM1 Surface Expression

    Get PDF
    RATIONALE: Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs) are promising cell sources for cardiac regenerative medicine. To realize hESC/hiPSC-based cardiac cell therapy, efficient induction, purification, and transplantation methods for cardiomyocytes are required. Though marker gene transduction or fluorescent-based purification methods have been reported, fast, efficient and scalable purification methods with no genetic modification are essential for clinical purpose but have not yet been established. In this study, we attempted to identify cell surface markers for cardiomyocytes derived from hESC/hiPSCs. METHOD AND RESULT: We adopted a previously reported differentiation protocol for hESCs based on high density monolayer culture to hiPSCs with some modification. Cardiac troponin-T (TNNT2)-positive cardiomyocytes appeared robustly with 30-70% efficiency. Using this differentiation method, we screened 242 antibodies for human cell surface molecules to isolate cardiomyocytes derived from hiPSCs and identified anti-VCAM1 (Vascular cell adhesion molecule 1) antibody specifically marked cardiomyocytes. TNNT2-positive cells were detected at day 7-8 after induction and 80% of them became VCAM1-positive by day 11. Approximately 95-98% of VCAM1-positive cells at day 11 were positive for TNNT2. VCAM1 was exclusive with CD144 (endothelium), CD140b (pericytes) and TRA-1-60 (undifferentiated hESCs/hiPSCs). 95% of MACS-purified cells were positive for TNNT2. MACS purification yielded 5-10×10(5) VCAM1-positive cells from a single well of a six-well culture plate. Purified VCAM1-positive cells displayed molecular and functional features of cardiomyocytes. VCAM1 also specifically marked cardiomyocytes derived from other hESC or hiPSC lines. CONCLUSION: We succeeded in efficiently inducing cardiomyocytes from hESCs/hiPSCs and identifying VCAM1 as a potent cell surface marker for robust, efficient and scalable purification of cardiomyocytes from hESC/hiPSCs. These findings would offer a valuable technological basis for hESC/hiPSC-based cell therapy

    The effects inhibiting the proliferation of cancer cells by far-infrared radiation (FIR) are controlled by the basal expression level of heat shock protein (HSP) 70A

    Get PDF
    We developed a tissue culture incubator that can continuously irradiate cells with far-infrared radiation (FIR) of wavelengths between 4 and 20 μm with a peak of 7–12 μm, and found that FIR caused different inhibiting effects to five human cancer cell lines, namely A431 (vulva), HSC3 (tongue), Sa3 (gingiva), A549 (lung), and MCF7 (breast). Then, in order to make clear the control system for the effect of FIR, the gene expression concerned to the inhibition effect by FIR were analyzed. In consequence, basal expression level of HSP70A mRNA was higher in A431 and MCF7 cells than in the FIR-sensitive HSC3, Sa3, and A549 cells. Also, the over expression of HSP70 inhibited FIR-induced growth arrest in HSC3 cells, and an HSP70 siRNA inhibited the proliferation of A431 cells by irradiation with FIR. These results indicate that the effect of a body temperature range of FIR suppressing the proliferation of some cancer cells is controlled by the basal expression level of heat shock protein (HSP) 70A. This finding suggested that FIR should be very effective medical treatment for some cancer cells which have a low level of HSP70. Still more, if the level of HSP70 in any cancer of a patient was measured, the effect of medical treatment by FIR can be foreseen for the cancer
    corecore