5 research outputs found

    Quasi-one dimensional graphite ribbon structures in the presence of a magnetic field and the on-site Coulomb correlation at half-filling

    No full text
    We have presented the role of the Coulomb interaction (U) and the magnetic field B⃗\vec{B} on the ground state properties of the quasi-one dimensional graphite ribbon structures at half-filling. Mean field Hartree-Fock Approximation is used to study the systems. To understand the boundary effects in graphite structures, we have compared the results of these systems with those of the square lattice ribbon structures. Studying the density of states, the Drude weight and the charge gap, we have drawn the U – B phase diagrams for the zigzag and the armchair graphite ribbons. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

    RcoA has pleiotropic effects on aspergillus nidulans cellular development

    No full text
    The definitive version is available at www.blackwell-synergy.comAspergillus nidulans rcoA encodes a member of the WD repeat family of proteins. The RcoA protein shares sequence similarity with other members of this protein family, including the Saccharomyces cerevisiae Tup1p and Neurospora crassa RCO1. Tup1p is involved in negative regulation of an array of functions including carbon catabolite repression. RCO1 functions in regulating pleiotropic developmental processes, but not carbon catabolite repression. In A. nidulans, deletion of rcoA (DrcoA), a recessive mutation, resulted in gross defects in vegetative growth, asexual spore production and sterigmatocystin (ST) biosynthesis. Expression of the asexual and ST pathway-specific regulatory genes, brlA and aflR, respectively, but not the signal transduction genes (i.e. flbA, fluG or fadA) regulating brlA and aflR expression was delayed (brlA) or eliminated (aflR) in a DrcoA strain. Overexpression of aflR in a DrcoA strain could not rescue normal expression of downstream targets of AflR. CreAdependent carbon catabolite repression of starch and ethanol utilization was only weakly affected in a DrcoA strain. The strong role of RcoA in development, vegetative growth and ST production, compared with a relatively weak role in carbon catabolite repression, is similar to the role of RCO1 in N. crassa.Julie Hicks, Robin A. Lockington, Joseph Strauss, Daniel Dieringer, Christian P. Kubicek, Joan Kelly and Nancy Kelle

    Genomic Screen for Vacuolar Protein Sorting Genes in Saccharomyces cerevisiae

    No full text
    The biosynthetic sorting of hydrolases to the yeast vacuole involves transport along two distinct routes referred to as the carboxypeptidase Y and alkaline phosphatase pathways. To identify genes involved in sorting to the vacuole, we conducted a genome-wide screen of 4653 homozygous diploid gene deletion strains of Saccharomyces cerevisiae for missorting of carboxypeptidase Y. We identified 146 mutant strains that secreted strong-to-moderate levels of carboxypeptidase Y. Of these, only 53 of the corresponding genes had been previously implicated in vacuolar protein sorting, whereas the remaining 93 had either been identified in screens for other cellular processes or were only known as hypothetical open reading frames. Among these 93 were genes encoding: 1) the Ras-like GTP-binding proteins Arl1p and Arl3p, 2) actin-related proteins such as Arp5p and Arp6p, 3) the monensin and brefeldin A hypersensitivity proteins Mon1p and Mon2p, and 4) 15 novel proteins designated Vps61p-Vps75p. Most of the novel gene products were involved only in the carboxypeptidase Y pathway, whereas a few, including Mon1p, Mon2p, Vps61p, and Vps67p, appeared to be involved in both the carboxypeptidase Y and alkaline phosphatase pathways. Mutants lacking some of the novel gene products, including Arp5p, Arp6p, Vps64p, and Vps67p, were severely defective in secretion of mature α-factor. Others, such as Vps61p, Vps64p, and Vps67p, displayed defects in the actin cytoskeleton at 30°C. The identification and phenotypic characterization of these novel mutants provide new insights into the mechanisms of vacuolar protein sorting, most notably the probable involvement of the actin cytoskeleton in this process
    corecore