54 research outputs found

    TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes.

    Get PDF
    A diverse environment challenges skin to maintain temperature, hydration, and electrolyte balance while also maintaining normal immunological function. Rosacea is a common skin disease that manifests unique inflammatory responses to normal environmental stimuli. We hypothesized that abnormal function of innate immune pattern recognition could explain the enhanced sensitivity of patients with rosacea, and observed that the epidermis of patients with rosacea expressed higher amounts of Toll-like receptor 2 (TLR2) than normal patients. Increased expression of TLR2 was not seen in other inflammatory skin disorders such as atopic dermatitis or psoriasis. Overexpression of TLR2 on keratinocytes, treatment with TLR2 ligands, and analysis of TLR2-deficient mice resulted in a calcium-dependent release of kallikrein 5 from keratinocytes, a critical protease involved in the pathogenesis of rosacea. These observations show that abnormal TLR2 function may explain enhanced inflammatory responses to environmental stimuli and can act as a critical element in the pathogenesis of rosacea

    Origin of thermal and non-thermal hard X-ray emission from the Galactic center

    Get PDF
    Topic: An INTEGRAL View of Compact ObjectsWe analyse new results of CHANDRA and SUZAKU which found a flux of hard X-ray emission from the compact region around Sgr A* (r∼ 100 pc). We propose that this emission is a consequence of a special transient accretion process when a part of captured star obtains an additional angular momentum. As a result a flux of subrelativistic protons is ejected from the Galactic black hole, which heats up the background plasma in the Galactic center up to temperature about 6-10 keV and produces by inverse bremsstrahlung a flux of non-thermal X-ray emission in the energy range above 10 keV.published_or_final_versio

    Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD

    Get PDF
    LiteBIRD has been selected as JAXA’s strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of -56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34–161 GHz), one of LiteBIRD’s onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90◦ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented

    Overview of the medium and high frequency telescopes of the LiteBIRD space mission

    Get PDF
    LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD

    LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization

    Get PDF
    LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 μK-arcmin with a typical angular resolution of 0.5° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes

    TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes.

    Get PDF
    A diverse environment challenges skin to maintain temperature, hydration, and electrolyte balance while also maintaining normal immunological function. Rosacea is a common skin disease that manifests unique inflammatory responses to normal environmental stimuli. We hypothesized that abnormal function of innate immune pattern recognition could explain the enhanced sensitivity of patients with rosacea, and observed that the epidermis of patients with rosacea expressed higher amounts of Toll-like receptor 2 (TLR2) than normal patients. Increased expression of TLR2 was not seen in other inflammatory skin disorders such as atopic dermatitis or psoriasis. Overexpression of TLR2 on keratinocytes, treatment with TLR2 ligands, and analysis of TLR2-deficient mice resulted in a calcium-dependent release of kallikrein 5 from keratinocytes, a critical protease involved in the pathogenesis of rosacea. These observations show that abnormal TLR2 function may explain enhanced inflammatory responses to environmental stimuli and can act as a critical element in the pathogenesis of rosacea

    X-Ray Spectroscopy of Galactic Hot Gas along the PKS 2155-304 Sight Line

    Get PDF
    We present a detailed spectroscopic study of the hot gas in the Galactic halo toward the direction of a blazer PKS 2155304 ( 0.117). The OVII and OVIII absorption lines were measured with the Low and High Energy Transmission Grating Spectrographs aboard Chandra, and the OVII, OVIII, and NeIX emission lines produced in an adjacent field of the PKS 2155304 direction were observed with the X-ray Imaging Spectrometer aboard Suzaku. Assuming vertically exponential distributions of the gas temperature and the density, we performed a combined analysis of the absorption and emission data. The gas temperature and the density at the galactic plane were determined to be (2.5 ) 10K and () 10cm, and the scale heights of the gas temperature and density were 5.6 kpc and 2.3 kpc, respectively. These values are consistent with those obtained in the LMC X-3 direction

    Origin of 6.4 keV Line Emission from Molecular Clouds in the Galactic Center

    No full text
    We analyze the 6.4 keV line and continuum emission from the molecular cloud SgrB2 and the source HESS J1745-303, which is supposed to be a complex of molecular gas. From the HESS results it follows that Sgr A* is a source of high energy protons, which penetrate into molecular clouds producing there a TeV gamma-ray flux. We present arguments that Sgr A may also produce a flux of subrelativistic protons which generate the 6.4 keV line and bremsstrahlune continuum emission from the clouds. © 2009. Astronomical Society of Japan.link_to_subscribed_fulltex
    corecore