92 research outputs found

    Synthesis and In Vitro Assessment of pH-Sensitive Human Serum Albumin Conjugates of Pirarubicin

    Get PDF
    In a previous study, we reported on the development of a synthetic polymer conjugate of pirarubicin (THP) that was formed via an acid-labile hydrazone bond between the polymer and the THP. However, the synthetic polymer itself was non-biodegradable, which could lead to unexpected adverse effects. Human serum albumin (HSA), which has a high biocompatibility and good biodegradability, is also a potent carrier for delivering antitumor drugs. The objective of this study was to develop pH-sensitive HSA conjugates of THP (HSA-THP), and investigate the release of THP and the cytotoxicity under acidic conditions in vitro for further clinical development. HSA-THP was synthesized by conjugating maleimide hydrazone derivatives of THP with poly-thiolated HSA using 2-iminothiolane, via a thiol-maleimide coupling reaction. We synthesized two types of HSA-THP that contained different amounts of THP (HSA-THP2 and HSA-THP4). Free THP was released from both of the HSA conjugates more rapidly at an acidic pH, and the rates of release for HSA-THP2 and HSA-THP4 were similar. Moreover, both HSA-THPs exhibited a higher cytotoxicity at acidic pH than at neutral pH, which is consistent with the effective liberation of free THP under acidic conditions. These findings suggest that these types of HSA-THPs are promising candidates for further development

    Differential Effects of Methoxy Group on the Interaction of Curcuminoids with Two Major Ligand Binding Sites of Human Serum Albumin

    Get PDF
    Curcuminoids are a group of compounds with a similar chemical backbone structure but containing different numbers of methoxy groups that have therapeutic potential due to their anti-inflammatory and anti-oxidant properties. They mainly bind to albumin in plasma. These findings influence their body disposition and biological activities. Spectroscopic analysis using site specific probes on human serum albumin (HSA) clearly indicated that curcumin (Cur), demethylcurcumin (Dmc) and bisdemethoxycurcumin (Bdmc) bind to both Site I (sub-site Ia and Ib) and Site II on HSA. At pH 7.4, the binding constants for Site I were relatively comparable between curcuminoids, while the binding constants for Site II at pH 7.4 were increased in order Cur , Dmc , Bdmc. Binding experiments using HSA mutants showed that Trp214 and Arg218 at Site I, and Tyr411 and Arg410 at Site II are involved in the binding of curcuminoids. The molecular docking of all curcuminoids to the Site I pocket showed that curcuminoids stacked with Phe211 and Trp214, and interacted with hydrophobic and aromatic amino acid residues. In contrast, each curcuminoid interacted with Site II in a different manner depending whether a methoxy group was present or absent. A detailed analysis of curcuminoids-albumin interactions would provide valuable information in terms of understanding the pharmacokinetics and the biological activities of this class of compounds

    Comparison of the Pharmacokinetic Properties of Hemoglobin-Based Oxygen Carriers

    No full text
    Hemoglobin (Hb) is an ideal material for use in the development of an oxygen carrier in view of its innate biological properties. However, the vascular retention of free Hb is too short to permit a full therapeutic effect because Hb is rapidly cleared from the kidney via glomerular filtration or from the liver via the haptogloblin-CD 163 pathway when free Hb is administered in the blood circulation. Attempts have been made to develop alternate acellular and cellular types of Hb based oxygen carriers (HBOCs), in which Hb is processed via various routes in order to regulate its pharmacokinetic properties. These HBOCs have been demonstrated to have superior pharmacokinetic properties including a longer half-life than the Hb molecule in preclinical and clinical trials. The present review summarizes and compares the pharmacokinetic properties of acellular and cellular type HBOCs that have been developed through different approaches, such as polymerization, PEGylation, cross-linking, and encapsulation

    Potential Use of Biological Proteins for Liver Failure Therapy

    No full text
    Biological proteins have unlimited potential for use as pharmaceutical products due to their various biological activities, which include non-toxicity, biocompatibility, and biodegradability. Recent scientific advances allow for the development of novel innovative protein-based products that draw on the quality of their innate biological activities. Some of them hold promising potential for novel therapeutic agents/devices for addressing hepatic diseases such as hepatitis, fibrosis, and hepatocarcinomas. This review attempts to provide an overview of the development of protein-based products that take advantage of their biological activity for medication, and discusses possibilities for the therapeutic potential of protein-based products produced through different approaches to specifically target the liver (or hepatic cells: hepatocytes, hepatic stellate cells, liver sinusoidal endothelial cells, and Kupffer cells) in the treatment of hepatic diseases

    Long-Term Stored Hemoglobin-Vesicles, a Cellular Type of Hemoglobin-Based Oxygen Carrier, Has Resuscitative Effects Comparable to That for Fresh Red Blood Cells in a Rat Model with Massive Hemorrhage without Post-Transfusion Lung Injury.

    No full text
    Hemoglobin-vesicles (HbV), encapsulating highly concentrated human hemoglobin in liposomes, were developed as a substitute for red blood cells (RBC) and their safety and efficacy in transfusion therapy has been confirmed in previous studies. Although HbV suspensions are structurally and physicochemically stabile for least 1-year at room temperature, based on in vitro experiments, the issue of whether the use of long-term stored HbV after a massive hemorrhage can be effective in resuscitations without adverse, post-transfusion effects remains to be clarified. We report herein on a comparison of the systemic response and the induction of organ injuries in hemorrhagic shock model rats resuscitated using 1-year-stored HbV, freshly packed RBC (PRBC-0) and by 28-day-stored packed RBC (PRBC-28). The six-hour mortality after resuscitation was not significantly different among the groups. Arterial blood pressure and blood gas parameters revealed that, using HbV, recovery from the shock state was comparable to that when PRBC-0 was used. Although no significant change was observed in serum parameters reflecting liver and kidney injuries at 6 hours after resuscitation among the three resuscitation groups, results based on Evans Blue and protein leakage in bronchoalveolar lavage fluid, the lung wet/dry weight ratio and histopathological findings indicated that HbV as well as PRBC-0 was less predisposed to result in a post-transfusion lung injury than PRBC-28, as evidenced by low levels of myeloperoxidase accumulation and subsequent oxidative damage in the lung. The findings reported herein indicate that 1-year-stored HbV can effectively function as a resuscitative fluid without the induction of post-transfused lung injury and that it is comparable to fresh PRBC, suggesting that HbV is a promising RBC substitute with a long shelf-life

    Crystal structure analysis of human serum albumin complexed with sodium 4-phenylbutyrate

    No full text
    Sodium 4-phenylbutyrate (PB) is an orphan drug for the treatment of urea cycle disorders. It also inhibits the development of endoplasmic reticulum stress, the action of histone deacetylases and as a regulator of the hepatocanalicular transporter. PB is generally considered to have the potential for use in the treatment of the diseases such as cancer, neurodegenerative diseases and metabolic diseases. In a previous study, we reported that PB is primarily bound to human serum albumin (HSA) in plasma and its binding site is drug site 2. However, details of the binding mode of PB to HSA remain unknown. To address this issue, we examined the crystal structure of HSA with PB bound to it. The structure of the HSA–PB complex indicates that the binding mode of PB to HSA is quite similar to that for octanoate or drugs that bind to drug site 2, as opposed to that for other medium-chain length of fatty acids. These findings provide useful basic information related to drug–HSA interactions. Moreover, the information presented herein is valuable in terms of providing safe and efficient treatment and diagnosis in clinical settings. Keywords: Human serum albumin, X-ray crystallography, Sodium 4-phenylbutyrate, Drug interaction, Drug site

    Preparation, Characterization, and in Vitro/in Vivo Evaluation of Paclitaxel-Bound Albumin-Encapsulated Liposomes for the Treatment of Pancreatic Cancer

    No full text
    Paclitaxel (PTX)-loaded liposomes were developed with the goal of enhancing the effects of cancer treatment. Although loading substances into the lipid membrane of liposome cause some destabilization of the lipid membrane, PTX was nearly exclusively embedded in the lipid membrane of liposomes, due to its low water solubility. Hydrophobic drugs can be encapsulated into the inner core of bovine serum albumin (BSA)-encapsulated liposomes (BSA-liposome) via noncovalent binding to albumin. Since PTX is able to noncovalently bind to albumin, we attempted to prepare PTX-loaded BSA-liposome (PTX–BSA-liposome). The amount of PTX loaded in the BSA-liposome could be increased substantially by using ethanol, since ethanol increases PTX solubility in BSA solutions via prompting the binding PTX to BSA. On the basis of the results of transmission electron microscopy and small-angle X-ray scattering, PTX–BSA-liposome formed unilamellar vesicles that were spherical in shape and the PTX was encapsulated into the inner aqueous core of the liposome as a form of PTX–BSA complex. In addition, the PTX–BSA-liposome, as well as nab-PTX, showed cytotoxicity against human pancreatic cancer cells, AsPC-1 cells, in a PTX concentration-dependent manner. The in vivo antitumor effect of PTX–BSA-liposomes was also observed in a mouse model that had been subcutaneously inoculated with pancreatic cancer cells by virtue of its high accumulation at the tumor site via the enhanced permeability retention effect. These results suggest that PTX–BSA-liposomes have the potential for serving as a novel PTX preparation method for the treatment of pancreatic cancer

    Metal-catalyzed oxidation of human serum albumin does not alter the interactive binding to the two principal drug binding sites

    No full text
    It is well known that various physiological factors such as pH, endogenous substances or post-translational modifications can affect the conformational state of human serum albumin (HSA). In a previous study, we reported that both pH- and long chain fatty acid-induced conformational changes can alter the interactive binding of ligands to the two principal binding sites of HSA, namely, site I and site II. In the present study, the effect of metal-catalyzed oxidation (MCO) caused by ascorbate/oxygen/trace metals on HSA structure and the interactive binding between dansyl-L-asparagine (DNSA; a site I ligand) and ibuprofen (a site II ligand) at pH 6.5 was investigated. MCO was accompanied by a time-dependent increase in carbonyl content in HSA, suggesting that the HSA was being oxidized. In addition, The MCO of HSA was accompanied by a change in net charge to a more negative charge and a decrease in thermal stability. SDS-PAGE patterns and α-helical contents of the oxidized HSAs were similar to those of native HSA, indicating that the HSA had not been extensively structurally modified by MCO. MCO also caused a selective decrease in ibuprofen binding. In spite of the changes in the HSA structure and ligand that bind to site II, no change in the interactive binding between DNSA and ibuprofen was observed. These data indicated that amino acid residues in site II are preferentially oxidized by MCO, whereas the spatial relationship between sites I and II (e.g. the distance between sites), the flexibility or space of each binding site are not altered. The present findings provide insights into the structural characteristics of oxidized HSA, and drug binding and drug-drug interactions on oxidized HSA
    • …
    corecore