31 research outputs found

    Masses of vector bosons in two-color dense QCD based on the hidden local symmetry

    Full text link
    We construct a low energy effective Lagrangian for the two-color QCD including the "vector" bosons (mesons with J^P=1^- and diquark baryons with J^P=1^+) in addition to the pseudo Nambu-Goldstone bosons with a degenerate mass M_\pi (mesons with J^P=0^- and baryons with J^P=0^+) based on the chiral symmetry breaking pattern of SU(2N_f) \to Sp(2N_f) in the framework of the hidden local symmetry. We investigate the dependence of the "vector" boson masses on the baryon number density \mu_B. We show that the \mu_B-dependence signals the phase transition of U(1)_B breaking. We find that it gives information about mixing among "vector" bosons: e.g. the mass difference between \rho and \omega mesons is proportional to the mixing strength between the diquark baryon with J^P=1^+ and the anti-baryon. We discuss the comparison with lattice data for two-color QCD at finite density.Comment: 24 pages, 5 figure

    A cell factory of Bacillus subtilis engineered for the simple bioconversion of myo-inositol to scyllo-inositol, a potential therapeutic agent for Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A stereoisomer of inositol, <it>scyllo</it>-inositol, is known as a promising therapeutic agent for Alzheimer's disease, since it prevents the accumulation of beta-amyloid deposits, a hallmark of the disease. However, this compound is relatively rare in nature, whereas another stereoisomer of inositol, <it>myo</it>-inositol, is abundantly available.</p> <p>Results</p> <p><it>Bacillus subtilis </it>possesses a unique inositol metabolism involving both stereoisomers. We manipulated the inositol metabolism in <it>B. subtilis </it>to permit the possible bioconversion from <it>myo</it>-inositol to <it>scyllo</it>-inositol. Within 48 h of cultivation, the engineered strain was able to convert almost half of 10 g/L <it>myo</it>-inositol to <it>scyllo</it>-inositol that accumulated in the culture medium.</p> <p>Conclusions</p> <p>The engineered <it>B. subtilis </it>serves as a prototype of cell factory enabling a novel and inexpensive supply of <it>scyllo</it>-inositol.</p

    Label-free Evaluation of Myocardial Infarct in Surgically Excised Ventricular Myocardium by Raman Spectroscopy

    Get PDF
    Understanding the viability of the ischemic myocardial tissue is a critical issue in determining the appropriate surgical procedure for patients with chronic heart failure after myocardial infarction (MI). Conventional MI evaluation methods are; however, preoperatively performed and/or give an indirect information of myocardial viability such as shape, color, and blood flow. In this study, we realize the evaluation of MI in patients undergoing cardiac surgery by Raman spectroscopy under label-free conditions, which is based on intrinsic molecular constituents related to myocardial viability. We identify key signatures of Raman spectra for the evaluation of myocardial viability by evaluating the infarct border zone myocardium that were excised from five patients under surgical ventricular restoration. We also obtain a prediction model to differentiate the infarcted myocardium from the non-infarcted myocardium by applying partial least squares regression-discriminant analysis (PLS-DA) to the Raman spectra. Our prediction model enables identification of the infarcted tissues and the non-infarcted tissues with sensitivities of 99.98% and 99.92%, respectively. Furthermore, the prediction model of the Raman images of the infarct border zone enabled us to visualize boundaries between these distinct regions. Our novel application of Raman spectroscopy to the human heart would be a useful means for the detection of myocardial viability during surgery

    Accumulation of Uroporphyrin I in Necrotic Tissues of Squamous Cell Carcinoma after Administration of 5-Aminolevulinic Acid

    Get PDF
    5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) fluorescence is widely used for the intraoperative detection of malignant tumors. However, the fluorescence emission profiles of the accompanying necrotic regions of these tumors have yet to be determined. To address this, we performed fluorescence and high-performance liquid chromatography (HPLC) analyses of necrotic tissues of squamous cancer after 5-ALA administration. In resected human lymph nodes of metastatic squamous cell carcinoma, we found a fluorescence peak at approximately 620 nm in necrotic lesions, which was distinct from the PpIX fluorescence peak at 635 nm for viable cancer lesions. Necrotic lesions obtained from a subcutaneous xenograft model of human B88 oral squamous cancer also emitted the characteristic fluorescence peak at 620 nm after light irradiation: the fluorescence intensity ratio (620 nm/635 nm) increased with the energy of the irradiation light. HPLC analysis revealed a high content ratio of uroporphyrin I (UPI)/total porphyrins in the necrotic cores of murine tumors, indicating that UPI is responsible for the 620 nm peak. UPI accumulation in necrotic tissues after 5-ALA administration was possibly due to the failure of the heme biosynthetic pathway. Taken together, fluorescence imaging of UPI after 5-ALA administration may be applicable for the evaluation of tumor necrosis

    Electronic structure of Kondo lattice compounds YbNi3X9 (X = Al, Ga) studied by hard x-ray spectroscopy

    Get PDF
    We have performed hard x-ray photoemission spectroscopy (HAXPES) for Yb-based Kondo lattice compounds; an antiferromagnetic heavy-fermion system YbNi3Al9 and a valence fluctuation system YbNi3Ga9. The Yb 3d5/2 spectra of YbNi3Ga9 showed both Yb2+ and Yb3+-derived structures indicating strong valence fluctuation, and the intensity of Yb2+ (Yb3+) structures gradually increased (decreased) on cooling. The Yb 3d5/2 spectra of YbNi3Al9 mostly consisted of Yb3+-derived structures and showed little temperature dependence. The Yb valences of YbNi3Ga9 and YbNi3Al9 at 22 K were evaluated to be 2.43 and 2.97, respectively. Based on the results of the Ni 2p and valence-band HAXPES spectra together with soft x-ray valence-band spectra, we described that the difference of physical properties of YbNi3X9 (X= Al, Ga) is derived from the differences of the 4f-hole level relative to the Fermi level (EF) and Ni 3d density of states at EF. The HAXPES results on the Yb valences were consistent with those obtained by x-ray absorption spectroscopy using the partial fluorescence yield mode and resonant x-ray emission spectroscopy at the Yb L3 edge

    Genetic Heterogeneity of Hepatitis C Virus in Association with Antiviral Therapy Determined by Ultra-Deep Sequencing

    Get PDF
    The hepatitis C virus (HCV) invariably shows wide heterogeneity in infected patients, referred to as a quasispecies population. Massive amounts of genetic information due to the abundance of HCV variants could be an obstacle to evaluate the viral genetic heterogeneity in detail.Using a newly developed massive-parallel ultra-deep sequencing technique, we investigated the viral genetic heterogeneity in 27 chronic hepatitis C patients receiving peg-interferon (IFN) α2b plus ribavirin therapy.Ultra-deep sequencing determined a total of more than 10 million nucleotides of the HCV genome, corresponding to a mean of more than 1000 clones in each specimen, and unveiled extremely high genetic heterogeneity in the genotype 1b HCV population. There was no significant difference in the level of viral complexity between immediate virologic responders and non-responders at baseline (p = 0.39). Immediate virologic responders (n = 8) showed a significant reduction in the genetic complexity spanning all the viral genetic regions at the early phase of IFN administration (p = 0.037). In contrast, non-virologic responders (n = 8) showed no significant changes in the level of viral quasispecies (p = 0.12), indicating that very few viral clones are sensitive to IFN treatment. We also demonstrated that clones resistant to direct-acting antivirals for HCV, such as viral protease and polymerase inhibitors, preexist with various abundances in all 27 treatment-naïve patients, suggesting the risk of the development of drug resistance against these agents.Use of the ultra-deep sequencing technology revealed massive genetic heterogeneity of HCV, which has important implications regarding the treatment response and outcome of antiviral therapy

    Pacing-Induced Non-Uniform Ca2+ Dynamics in Rat Atria Revealed by Rapid-Scanning Confocal Microscopy

    No full text
    Intracellular Ca2+ ([Ca2+]i) dynamics in isolated myocytes differ between the atria and ventricles due to the distinct t-tubular distributions. Although cellular aspects of ventricular [Ca2+]i dynamics in the heart have been extensively studied, little is known about those of atrial myocytes in situ. Here we visualized precise [Ca2+]i dynamics of atrial myocytes in Langendorff-perfused rat hearts by rapid-scanning confocal microscopy. Of 16 fluo-4-loaded hearts imaged during pacing up to 4-Hz, five hearts showed spatially uniform Ca2+ transients on systole among individual cells, whereas no discernible [Ca2+]i elevation developed during diastole. In contrast, the remaining hearts showed non-uniform [Ca2+]i dynamics within and among the cells especially under high-frequency (4 Hz) excitation, where subcellular cluster-like [Ca2+]i rises or wave-like [Ca2+]i propagation occurred on excitation. Such [Ca2+]i inhomogeneity was more pronounced at high-frequency pacing, showing beat-to-beat Ca2+ transient alternans. Despite such non-uniform dynamics, cessation of burst pacing of the atria was not followed by emergence of spontaneous Ca2+ waves, indicating minor Ca2+-releasing potentials of the sarcoplasmic reticulum (SR). In summary, rat atria display a propensity to show non-uniform [Ca2+]i dynamics on systole due to impaired Ca2+-release from the SR and paucity of t-tubules. Our results provide an important basis for understanding atrial pathophysiology
    corecore