86 research outputs found

    Melanin pigments in the melanocytic nevus regress spontaneously after inactivation by high hydrostatic pressure

    Get PDF
    We report a novel treatment for giant congenital melanocytic nevi (GCMN) that involves the reuse of resected nevus tissue after high hydrostatic pressurization (HHP). However, the remaining melanin pigments in the inactivated nevus tissue pose a problem; therefore, we performed a long-term observation of the color change of inactivated nevus tissue after HHP. Pressurized nevus specimens (200 MPa group, n = 9) and non-pressurized nevus tissues (control group, n = 9) were subcutaneously implanted into nude mice (BALB/c-nu) and then harvested 3, 6, and 12 months later. Color changes of the nevus specimens were evaluated. In the 200 MPa group, the specimen color gradually regressed and turned white, and brightness values were significantly higher in the 200 MPa group than in the control group after 6 months. This indicated that melanin pigments in the pressurized nevus tissue had spontaneously degraded and regressed. Therefore, it is not necessary to remove melanin pigments in HHP-treated nevus tissue

    High Hydrostatic Pressure Therapy Annihilates Squamous Cell Carcinoma in a Murine Model

    Get PDF
    Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin cancers. In the treatment of cSCC, it is necessary to remove it completely, and reconstructive surgery, such as a skin graft or a local or free flap, will be required, depending on the size, with donor-site morbidity posing a burden to the patient. The high hydrostatic pressure (HHP) technique has been developed as a physical method of decellularizing various tissues. We previously reported that HHP at 200 MPa for 10 min could inactivate all cells in the giant congenital melanocytic nevus, and we have already started a clinical trial using this technique. In the present study, we explored the critical pressurization condition for annihilating cSCC cells in vitro and confirmed that this condition could also annihilate cSCC in vivo. We prepared 5 pressurization conditions in this study (150, 160, 170, 180, and 190 MPa for 10 min) and confirmed that cSCC cells were killed by pressurization at ≥160 MPa for 10 min. In the in vivo study, the cSCC cells inactivated by HHP at 200 MPa for 10 min were unable to proliferate after injection into the intradermal space of mice, and transplanted cSCC tissues that had been inactivated by HHP showed a decreased weight at 5 weeks after implantation. These results suggested that HHP at 200 MPa for 10 min was able to annihilate SCC, so HHP technology may be a novel treatment of skin cancer

    Exploration of the Pressurization Condition for Killing Human Skin Cells and Skin Tumor Cells by High Hydrostatic Pressure

    Get PDF
    High hydrostatic pressure (HHP) is a physical method for inactivating cells or tissues without using chemicals such as detergents. We previously reported that HHP at 200 MPa for 10 min was able to inactivate all cells in skin and giant congenital melanocytic nevus (GCMN) without damaging the extracellular matrix. We also reported that HHP at 150 MPa for 10 min was not sufficient to inactivate them completely, while HHP at 200 MPa for 10 min was able to inactivate them completely. We intend to apply HHP to treat malignant skin tumor as the next step; however, the conditions necessary to kill each kind of cell have not been explored. In this work, we have performed a detailed experimental study on the critical pressure and pressurization time using five kinds of human skin cells and skin tumor cells, including keratinocytes (HEKas), dermal fibroblasts (HDFas), adipose tissue-derived stem cells (ASCs), epidermal melanocytes (HEMa-LPs), and malignant melanoma cells (MMs), using pressures between 150 and 200 MPa. We pressurized cells at 150, 160, 170, 180, or 190 MPa for 1 s, 2 min, and 10 min and evaluated the cellular activity using live/dead staining and proliferation assays. The proliferation assay revealed that HEKas were inactivated at a pressure higher than 150 MPa and a time period longer than 2 min, HDFas and MMs were inactivated at a pressure higher than 160 MPa and for 10 min, and ASCs and HEMa-LPs were inactivated at a pressure higher than 150 MPa and for 10 min. However, some HEMa-LPs were observed alive after HHP at 170 MPa for 10 min, so we concluded that HHP at a pressure higher than 180 MPa for 10 min was able to inactivate five kinds of cells completely

    Reliable Assessment and Quantification of the Fluorescence-Labeled Antisense Oligonucleotides In Vivo

    No full text
    The availability of fluorescent dyes and the advances in the optical systems for in vivo imaging have stimulated an increasing interest in developing new methodologies to study and quantify the biodistribution of labeled agents. However, despite these great achievements, we are facing significant challenges in determining if the observed fluorescence does correspond to the quantity of the dye in the tissues. In fact, although the far-red and near-infrared lights can propagate through several centimetres of tissue, they diffuse within a few millimetres as consequence of the elastic scattering of photons. In addition, when dye-labeled oligonucleotides form stable complex with cationic carriers, a large change in the fluorescence intensity of the dye is observed. Therefore, the measured fluorescence intensity is altered by the tissue heterogeneity and by the fluctuation of dye intensity. Hence, in this study a quantification strategy for fluorescence-labeled oligonucleotides was developed to solve these disadvantageous effects. Our results proved that upon efficient homogenization and dilution with chaotropic agents, such as guanidinium thiocyanate, it is possible to achieve a complete fluorescence intensity recovery. Furthermore, we demonstrated that this method has the advantage of good sensitivity and reproducibility, as well as easy handling of the tissue samples

    Tissue-engineered submillimeter-diameter vascular grafts for free flap survival in rat model

    Get PDF
    Vascular grafts for free flap transfers should be of very small diameter and remain patent for approximately three weeks to supply blood until the revascularization from the surrounding tissue is established, with the autologous vein grafts acting as the gold standard. Artificial submillimeter-diameter vascular grafts with clinically useful size of 0.6 mm inner diameter and 5 cm length were prepared and evaluated by replacing the axial artery of free flap in rats. The rat tail artery, selected as a novel bioscaffold material, was decellularized using ultrahigh-hydrostatic pressure (UHP) method and compared with the detergent-based conventional method. To induce rapid endothelialization, the graft lumen was modified with synthesized peptides, having high affinity to the endothelial progenitor cells. The UHP method and peptide modification at 37 °C were found to preserve the extracellular matrix structure well, leading to the stable immobilization of the peptide at the luminal surface. These grafts showed the neointima formation, even at the center position far from the native vessels, remained patent for three weeks, and resulted in the flap survival in the rat free-flap model. The tissue-engineered vascular grafts with functionalized lumen have great future potential as an alternative to autologous vein grafts in free flap transfers

    Polymers in Nanomedicine

    No full text
    XII, 284 p.online resource

    Single-Step Immobilization of Cell Adhesive Peptides on a Variety of Biomaterial Substrates via Tyrosine Oxidation with Copper Catalyst and Hydrogen Peroxide

    No full text
    Immobilization of biologically active peptides which were isolated from extracellular matrix proteins is a powerful strategy for the design and functionalization of biomaterial substrates. However, the method of peptide immobilization was restricted, that is, peptide is often immobilized through the reactive groups inherent in substrates with multistep reactions. Here, we report a single-step immobilization of fibronectin-derived cell adhesive peptide (Arg-Glu-Asp-Val; REDV) onto polymer materials by use of tyrosine oxidation with copper catalyst and hydrogen peroxide. REDV peptide was successfully immobilized on tissue culture polystyrene, poly­(ethylene terephthalate), poly­(vinyl chloride), expanded-poly­(tetrafluoroethylene), and poly­(l-lactic acid), resulting in enhanced adhesion of human umbilical vein endothelial cells. This method is a single-step reaction under very mild conditions and is available for the biological functionalization of various medical devices

    Influence of Molecular Mobility on Contrast Efficiency of Branched Polyethylene Glycol Contrast Agent

    No full text
    For a water-soluble polyethylene glycol (PEG) magnetic resonance imaging (MRI) contrast agent, it has been demonstrated that the contrast efficiency was increased with increased branched structure of the contrast agent. However, the cause of enhanced contrast efficiency by the branched structure has not been clarified. Hence, we investigate the cause of the contrast agent enhancement by changing the Gd introduction ratio of the eight-arm PEG from 1.97 to 4.07; furthermore, the terminal mobility of the contrast agents with different structures was evaluated using proton nuclear magnetic resonance (1H-NMR) spectroscopy. It was shown that the relaxivity and contrast luminance of the synthesized branched PEG-Gd contrast agents are larger than those of linear PEG-Gd and commercially available contrast agents. Additionally, the change in the Gd introduction ratio did not affect the contrast efficiency. The terminal mobility results measured by NMR show that the linewidth at half height became broader with an increased number of branches, implying that the mobility of branched PEG-Gd is slower than that of linear PEG-Gd. Interestingly, the linewidth at half height of different structures did not change in an organic solvent; this phenomenon appeared specifically in water. It is suggested that the stable branched structure enabled the improvement in the relaxivity and contrast luminance
    corecore