13 research outputs found

    Helicobacter pylori Infection of Gastrointestinal Epithelial Cells in vitro Induces Mesenchymal Stem Cell Migration through an NF-κB-Dependent Pathway

    Get PDF
    The role of bone marrow-derived mesenchymal stem cells (MSC) in the physiology of the gastrointestinal tract epithelium is currently not well established. These cells can be recruited in response to inflammation due to epithelial damage, home, and participate in tissue repair. In addition, in the case of tissue repair failure, these cells could transform and be at the origin of carcinomas. However, the chemoattractant molecules responsible for MSC recruitment and migration in response to epithelial damage, and particularly to Helicobacter pylori infection, remain unknown although the role of some chemokines has been suggested. This work aimed to get insight into the mechanisms of mouse MSC migration during in vitro infection of mouse gastrointestinal epithelial cells by H. pylori. Using a cell culture insert system, we showed that infection of gastrointestinal epithelial cells by different H. pylori strains is able to stimulate the migration of MSC. This mechanism involves the secretion by infected epithelial cells of multiple cytokines, with a major role of TNFα, mainly via a Nuclear Factor-kappa B-dependent pathway. This study provides the first evidence of the role of H. pylori infection in MSC migration and paves the way to a better understanding of the role of bone marrow-derived stem cells in gastric pathophysiology and carcinogenesis

    Leptin signaling and circuits in puberty and fertility

    Full text link

    Search for H to b anti-b produced in association with W bosons in pbarppbar{p} collisions at sqrts=sqrt{s} = 1.96-TeV

    No full text

    Genome-wide mRNA expression analysis of hepatic adaptation to high-fat diets reveals switch from an inflammatory to steatotic transcriptional program

    Get PDF
    Background: Excessive exposure to dietary fats is an important factor in the initiation of obesity and metabolic syndrome associated pathologies. The cellular processes associated with the onset and progression of diet-induced metabolic syndrome are insufficiently understood. Principal Findings: To identify the mechanisms underlying the pathological changes associated with short and long-term exposure to excess dietary fat, hepatic gene expression of ApoE3Leiden mice fed chow and two types of high-fat (HF) diets was monitored using microarrays during a 16-week period. A functional characterization of 1663 HF-responsive genes reveals perturbations in lipid, cholesterol and oxidative metabolism, immune and inflammatory responses and stress-related pathways. The major changes in gene expression take place during the early (day 3) and late (week 12) phases of HF feeding. This is also associated with characteristic opposite regulation of many HF-affected pathways between these two phases. The most prominent switch occurs in the expression of inflammatory/immune pathways (early activation, late repression) and lipogenic/adipogenic pathways (early repression, late activation). Transcriptional network analysis identifies NF-κB, NEMO, Akt, PPARγ and SREBP1 as the key controllers of these processes and suggests that direct regulatory interactions between these factors may govern the transition from early (stressed, inflammatory) to late (pathological, steatotic) hepatic adaptation to HF feeding. This transition observed by hepatic gene expression analysis is confirmed by expression of inflammatory proteins in plasma and the late increase in hepatic triglyceride content. In addition, the genes most predictive of fat accumulation in liver during 16-week high-fat feeding period are uncovered by regression analysis of hepatic gene expression and triglyceride levels. Conclusions: The transition from an inflammatory to a steatotic transcriptional program, possibly driven by the reciprocal activation of NF-κB and PPARγ regulators, emerges as the principal signature of the hepatic adaptation to excess dietary fat. These findings may be of essential interest for devising new strategies aiming to prevent the progression of high-fat diet induced pathologies. © 2009 Radonjic et al

    Direct search for Dirac magnetic monopoles in pbarppbar{p} collisions at sqrts=1.96sqrt{s} = 1.96 TeV

    No full text

    Measurement of the tbartt bar{t} Production Cross Section in pbarpp bar{p} collisions at sqrtssqrt{s} = 1.96-TeV in the All Hadronic Decay Mode

    No full text

    Measurement of the dipion mass spectrum in X(3872)toJ/psipi+pi−X(3872) to J/psi pi^+ pi^- decays

    No full text

    Search for neutral MSSM Higgs bosons decaying to tau pairs in pbarppbar{p} collisions at sqrts=1.96sqrt{s} = 1.96 TeV

    No full text
    corecore