18 research outputs found
Thermal Characteristics of the Mud Nests of the Social Wasp Polybia spinifex (Hymenoptera; Vespidae)
The thermal characteristics of mud nests of Polybia spinifex were investigated by measuring internal and surface temperatures of the nests. The nests had a layer of mud envelope and consisted of mud with fine sand particles. The envelope had a vertically long slit-like entrance hole. The mud nests had high thermal conductivities (0.51-0.67 W/(m degrees C)) comparable to brick, rather than insulation materials of wasps` nests such as paper and wood. It was revealed that the long entrance radiated more heat from the thereto-image. The rate of thermal radiation (emissivity) of the nest surface was 0.80, and the value was similar to that of sand. The internal temperatures of the nests were high from top (T(n1), temperature difference between ambient temperature (T(a)) was 10 degrees C) to bottom (T(n3), difference, 5 degrees C) at noon. On the other hand, the temperature distributions were reversed during the night. Temperature T(n1) was lower by 1 degrees C than T(a), possibly from nightly dew on the top surface, whereas, at the middle point (T(n2),) and T(n3), temperatures were higher by 1 degrees C compared to T(a). Temperature fluctuations (ranges between maximum and minimum temperature) at T(n2) and T(n3) were similar to that of T(a), whereas the values at T(n1) and T(s) were higher than that of T(a)
IJTC2007-????? DEFORMATION CHARACTERISTICS OF THE ULTRATHIN LIQUID FILM SURFACE CONSIDERING THE EFFECTS OF POLAR ENDGROUPS
ABSTRACT To examine deformations of ultra-thin but continuum liquid film, the long wave theory was employed. The long wave theory uses the time-evolution equation for the shape and deformation of the thin liquid film and includes the surface tensions and surface forces such as the van der Waals (vdW) force. By numerically solving the time-dependent long wave equation, deformations of the ultra-thin lubricant film considering the vdW pressure with initial/boundary configurations of the liquid surfaces were obtained