2,484 research outputs found

    Spin Susceptibility in the Superconducting state of Ferromagnetic Superconductor UCoGe

    Get PDF
    In order to determine the superconducting paring state in the ferromagnetic superconductor UCoGe, ^{59}Co NMR Knight shift, which is directly related to the microscopic spin susceptibility, was measured in the superconducting state under magnetic fields perpendicular to spontaneous magnetization axis: ^{59}K^{a, b}. ^{59}K^{a, b} shows to be constant, but does not decrease below a superconducting transition. These behaviors as well as the invariance of the internal field at the Co site in the superconducting state exclude the spin-singlet pairing, and can be interpreted with the equal-spin pairing state with a large exchange field along the c axis, which was studied by Mineev [Phys. Rev. B 81, 180504 (2010)].Comment: 5 pages, 4 figures, to be appear in PR

    Structure Transformation between Perovskite-type and B-type Rare Earth Structures

    Get PDF
    AbstractLaLnO3 (Ln = Dy, Ho, Y, Er, and Yb) and La(Ln, Ln’)O3 (Ln, Ln’ = Dy, Ho, Er, and Yb) systems were synthesized by solid state reaction method and characterized by X-ray diffraction. When Ln = Er or Yb which has smaller ionic radius than that of Y3+ (0.900Å), the LaLnO3 showed an orthorhombic perovskite structure, while when Ln = Dy or Ho which has larger ionic radius than that of Y3+, it showed a monoclinic B-type rare earth structure. Next, the solid solution system of LaHoxYb1-xO3 was investigated in order to clarify the crystallochemical factor affecting the structural transformation. The XRD experiments revealed that the samples with x = 0.90 (rav.=0.8977Å) showed the orthorhombic perovskite structure, changed to the mixed phases of monoclinic B-type rare earth, and orthorhombic perovskite structures with increasing x, and then the samples with x ≄ 0.95 (rav.=0.8994Å) showed the monoclinic B-type rare earth structures, where rav. represents the average ionic radii of Ln and Ln’

    An AKARI Search for Intracluster Dust of Globular Clusters

    Full text link
    We report the observations of 12 globular clusters with the AKARI/FIS. Our goal is to search for emission from the cold dust within clusters. We detect diffuse emissions toward NGC 6402 and 2808, but the IRAS 100-micron maps show the presence of strong background radiation. They are likely emitted from the galactic cirrus, while we cannot rule out the possible association of a bump of emission with the cluster in the case of NGC 6402. We also detect 28 point-like sources mainly in the WIDE-S images (90 micron). At least several of them are not associated with the clusters but background galaxies based on some external catalogs. We present the SEDs by combining the near-and-mid infrared data obtained with the IRC if possible. The SEDs suggest that most of the point sources are background galaxies. We find one candidate of the intracluster dust which has no mid-infrared counterpart unlike the other point-like sources, although some features such as its point-like appearance should be explained before we conclude its intracluster origin. For most of the other clusters, we have confirmed the lack of the intracluster dust. We evaluate upper limits of the intracluster dust mass to be between 1.0E-05 and 1.0E-03 solar mass depending on the dust temperature. The lifetime of the intracluster dust inferred from the upper limits is shorter than 5 Myr (T=70K) or 50 Myr (35K). Such short lifetime indicates some mechanism(s) are at work to remove the intracluster dust. We also discuss its impact on the chemical evolution of globular clusters.Comment: Accepted for publication in PASJ AKARI special issue. 14 pages, 11 figure

    AKARI Near- to Mid-Infrared Imaging and Spectroscopic Observations of the Small Magellanic Cloud. I. Bright Point Source List

    Full text link
    We carried out a near- to mid-infrared imaging and spectroscopic observations of the patchy areas in the Small Magellanic Cloud using the Infrared Camera on board AKARI. Two 100 arcmin2 areas were imaged in 3.2, 4.1, 7, 11, 15, and 24 um and also spectroscopically observed in the wavelength range continuously from 2.5 to 13.4 um. The spectral resolving power (lambda/Delta lambda) is about 20, 50, and 50 at 3.5, 6.6 and 10.6 um, respectively. Other than the two 100 arcmin2 areas, some patchy areas were imaged and/or spectroscopically observed as well. In this paper, we overview the observations and present a list of near- to mid-infrared photometric results, which lists ~ 12,000 near-infrared and ~ 1,800 mid-infrared bright point sources detected in the observed areas. The 10 sigma limits are 16.50, 16.12, 13.28, 11.26, 9.62, and 8.76 in Vega magnitudes at 3.2, 4.1, 7, 11, 15, and 24 um bands, respectively.Comment: 16 pages, 7 figures, accepted for publication in PASJ. Full resolution version is available at http://www-irc.mtk.nao.ac.jp/%7Eyita/smc20100112.pd

    Water vapor on supergiants. The 12 micron TEXES spectra of mu Cephei

    Full text link
    Several recent papers have argued for warm, semi-detached, molecular layers surrounding red giant and supergiant stars, a concept known as a MOLsphere. Spectroscopic and interferometric analyses have often corroborated this general picture. Here, we present high-resolution spectroscopic data of pure rotational lines of water vapor at 12 microns for the supergiant mu Cephei. This star has often been used to test the concept of molecular layers around supergiants. Given the prediction of an isothermal, optically thick water-vapor layer in Local Thermodynamic Equilibrium around the star (MOLsphere), we expected the 12 micron lines to be in emission or at least in absorption but filled in by emission from the molecular layer around the star. Our data, however, show the contrary; we find definite absorption. Thus, our data do not easily fit into the suggested isothermal MOLsphere scenario. The 12 micron lines, therefore, put new, strong constraints on the MOLsphere concept and on the nature of water seen in signatures across the spectra of early M supergiants. We also find that the absorption is even stronger than that calculated from a standard, spherically symmetric model photosphere without any surrounding layers. A cool model photosphere, representing cool outer layers is, however, able to reproduce the lines, but this model does not account for water vapor emission at 6 microns. Thus, a unified model for water vapor on mu Cephei appears to be lacking. It does seem necessary to model the underlying photospheres of these supergiants in their whole complexity. The strong water vapor lines clearly reveal inadequacies of classical model atmospheres.Comment: Accepted for publication in the Astrophysical Journa

    Breeding migration and population stability

    Get PDF
    Abstract We have modeled habitat shift for reproduction to examine the relationship between the timing of migration and population stability, by modifying Takimoto's (Am Nat 162:93-109, 2003) consumer-resource model with a consumer's ontogenetic niche shift. We found that equilibrium was always locally unstable if migration occurs at a fixed time or level of energy storage, whereas it could be stable if the timing of migration was adaptively flexible to maximize reproductive output. The general conditions for stability were safer breeding rather than feeding habitat and abundant resources at the feeding habitat. These results imply that both adopting an adaptive plastic strategy in the timing of migration and choosing to migrate from a rich feeding habitat to a safe breeding habitat can contribute to population stability. We also found that reduced reproductive success with delays in migration, and the survival rate after reproduction, had complicated effects on stability, depending on resource availability at the feeding habitat. The equilibrium was more likely to be stable when reproduction success was only slightly (or greatly) reduced or survival rate was high (or low) if the feeding habitat was rich (or poor). These are significant predictions for ecological study of migrating animals

    High-K Precession modes: Axially symmetric limit of wobbling motion

    Full text link
    The rotational band built on the high-K multi-quasiparticle state can be interpreted as a multi-phonon band of the precession mode, which represents the precessional rotation about the axis perpendicular to the direction of the intrinsic angular momentum. By using the axially symmetric limit of the random-phase-approximation (RPA) formalism developed for the nuclear wobbling motion, we study the properties of the precession modes in 178^{178}W; the excitation energies, B(E2) and B(M1) values. We show that the excitations of such a specific type of rotation can be well described by the RPA formalism, which gives a new insight to understand the wobbling motion in the triaxial superdeformed nuclei from a microscopic view point.Comment: 14 pages, 8 figures (Spelling of the authors name was wrong at the first upload, so it is corrected

    Maxillary sinus textiloma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Textilomas have been reported in many locations. We report the first case of textiloma located in the maxillary sinus that mimicked a sinus cyst recurrence on computed tomography images.</p> <p>Case presentation</p> <p>A 60-year-old Caucasian man was referred for persistent infection of the right maxillary sinus. A maxillary sinus benign cyst had been removed three months before. Computed tomography showed a sinus opacity evoking a cyst recurrence. A new operation was planned to remove the cyst by a Caldwell-Luc approach. After excision of very thick fibrous tissue, a compress was discovered in the maxillary sinus. The patient did not present with any sinus infection after the operation.</p> <p>Conclusion</p> <p>The surgeon should always take into account the possibility of textilomas in a patient with a history of sinus surgery.</p
    • 

    corecore