37,655 research outputs found
Intrinsic double-peak structure of the specific heat in low-dimensional quantum ferrimagnets
Motivated by recent magnetic measurements on A3Cu3(PO4)4 (A=Ca,Sr) and
Cu(3-Clpy)2(N3)2 (3-Clpy=3-Chloropyridine), both of which behave like
one-dimensional ferrimagnets, we extensively investigate the ferrimagnetic
specific heat with particular emphasis on its double-peak structure. Developing
a modified spin-wave theory, we reveal that ferromagnetic and antiferromagnetic
dual features of ferrimagnets may potentially induce an extra low-temperature
peak as well as a Schottky-type peak at mid temperatures in the specific heat.Comment: 5 pages, 6 figures embedded, Phys. Rev. B 65, 214418 (2002
Evidence for Carrier-Induced High-Tc Ferromagnetism in Mn-doped GaN film
A GaN film doped with 8.2 % Mn was grown by the molecular-beam-epitaxy
technique. Magnetization measurements show that this highly Mn-doped GaN film
exhibits ferromagnetism above room temperature. It is also revealed that the
high-temperature ferromagnetic state is significantly suppressed below 10 K,
accompanied by an increase of the electrical resistivity with decreasing
temperature. This observation clearly demonstrates a close relation between the
ferromagnetism with extremely high-Tc and the carrier transport in the Mn-doped
GaN film.Comment: 9 pages, 3 figure
Nuclear Spin-Lattice Relaxation in One-Dimensional Heisenberg Ferrimagnets: Three-Magnon versus Raman Processes
Nuclear spin-lattice relaxation in one-dimensional Heisenberg ferrimagnets is
studied by means of a modified spin-wave theory. We consider the second-order
process, where a nuclear spin flip induces virtual spin waves which are then
scattered thermally via the four-magnon exchange interaction, as well as the
first-order process, where a nuclear spin directly interacts with spin waves
via the hyperfine interaction. We point out a possibility of the three-magnon
relaxation process predominating over the Raman one and suggest model
experiments.Comment: to be published in J. Phys. Soc. Jpn. 73, No. 6 (2004
-- coupling in He with the Nijmegen soft-core potentials
The -- coupling in
He is studied with the [ + +
] + [ + + ] + [ + + ] model,
where the particle is assumed as a frozen core. We use the Nijmegen
soft-core potentials, NSC97e and NSC97f, for the valence baryon-baryon part,
and the phenomenological potentials for the parts (=,
, and ). We find that the calculated of He for NSC97e and NSC97f are,
respectively, 0.6 and 0.4 MeV in the full coupled-channel calculation, the
results of which are about half in comparison with the experimental data,
MeV.
Characteristics of the sector in the NSC97 potentials are discussed in
detail.Comment: 18 pages, 4 figure
Charge echo in a Cooper-pair box
A spin-echo-type technique is applied to an artificial two-level system that
utilizes charge degree of freedom in a small superconducting electrode.
Gate-voltage pulses are used to produce the necessary pulse sequence in order
to eliminate the inhomogeneity effect in the time-ensemble measurement and to
obtain refocused echo signals. Comparison of the decay time of the observed
echo signal with estimated decoherence time suggests that low-frequency
energy-level fluctuations due to the 1/f charge noise dominate the dephasing in
the system.Comment: 4 pages, 3 figure
Ground State Property of an Alternating Spin Ladder Involving Two Kinds of Inter-Chain Interactions
The ground state property of the alternating spin ladder is studied in the
case that the system involves an antiferromagnetic intra-chain interaction as
well as two kinds of inter-chain interactions; one is between spins of the same
magnitude and the other is between spins with different magnitudes. The
calculation has been carried out by the exact diagonalization method. As a
consequence of the competition among interactions, the system is revealed to
show an interesting variety of phases in the ground state property. Its phase
diagram is exhibited in the parameter space of the system. We find that,
however small the total amount of the inter-chain interactions is, the
ferrimagnetic ground state becomes unstable in a certain region. In this case,
which of the ferrimagnetic and the singlet ground state to appear is determined
only by the ratio between the inter-chain interactions regardless of their
total amount. The nature of two phases appearing in the singlet region of the
phase diagram and the type of the phase transition between them are also
discussed. The results are ensured by comparing with those of obtained in other
models which are contained in our model as special limiting cases.Comment: 12 pages, 9 PostScript figure
Nuclear spin-lattice relaxation in ferrimagnetic clusters and chains: A contrast between zero and one dimensions
Motivated by ferrimagnetic oligonuclear and chain compounds synthesized by
Caneschi et al., both of which consist of alternating manganese(II) ions and
nitronyl-nitroxide radicals, we calculate the nuclear spin-lattice relaxation
rate 1/T_1 employing a recently developed modified spin-wave theory. 1/T_1 as a
function of temperature drastically varies with the location of probe nuclei in
both clusters and chains, though the relaxation time scale is much larger in
zero dimension than in one dimension. 1/T_1 as a function of an applied field
in long chains forms a striking contrast to that in finite clusters, diverging
with decreasing field like inverse square root at low temperatures and
logarithmically at high temperatures.Comment: to be published in Phys. Rev. B 68 August 01 (2003
Temperature square dependence of the low frequency 1/f charge noise in the Josephson junction qubits
To verify the hypothesis about the common origin of the low frequency 1/f
noise and the quantum f noise recently measured in the Josephson charge qubits,
we study temperature dependence of the 1/f noise and decay of coherent
oscillations. T^2 dependence of the 1/f noise is experimentally demonstrated,
which supports the hypothesis. We also show that dephasing in the Josephson
charge qubits off the electrostatic energy degeneracy point is consistently
explained by the same low frequency 1/f noise that is observed in the transport
measurements.Comment: 4 pages, 2 figure
- …