38 research outputs found

    The Microenvironment of Freeze-Injured Mouse Urinary Bladders Enables Successful Tissue Engineering

    Get PDF
    Mouse bone marrow-derived cells implanted into freeze-injured bladder walls form smooth muscle layers, but not in intact walls. We determined if the microenvironment within injured urinary bladders was supportive of smooth muscle layer development. The urinary bladders of female nude mice were freeze-injured for 30 s. Three days later, the rate of blood flow in the wounded areas and in comparable areas of intact control urinary bladders was observed by charge-coupled device (CCD) video microscopy. Injured and control bladder walls were also analyzed histologically and cytologically. Growth factor mRNA expression was determined by real-time reverse transcription polymerase chain reaction arrays. The injured regions maintained a partial microcirculation in which blood flow velocity was significantly less than in controls. The injured bladder walls had few typical smooth muscle layers, and blood vessels in the walls had reduced smooth muscle content. The loss of smooth muscle cells in the bladder walls may have resulted in the formation of large porous spaces seen by scanning electron microscopy of the injured areas. The expression of nineteen growth-related mRNAs, including secreted phosphoprotein 1, inhibin beta-A, glial cell line-derived neurotrophic factor, and transforming growth factor beta 1, were significantly upregulated in the injured urinary bladders. In conclusion, the microenvironment in freeze-injured urinary bladders enables successful tissue engineering.ArticleTISSUE ENGINEERING PART A. 15(11):3367-3375 (2009)journal articl

    Intravenous Administration of Bone Marrow-Derived Mesenchymal Stem Cell, but not Adipose Tissue-Derived Stem Cell, Ameliorated the Neonatal Hypoxic-Ischemic Brain Injury by Changing Cerebral Inflammatory State in Rat

    Get PDF
    Perinatal hypoxic-ischemic (HI) brain injury occurs in 1 in 1,000 live births and remains the main cause of neurological disability and death in term infants. Cytotherapy has recently emerged as a novel treatment for tissue injury. In particular, mesenchymal stem cells (MSCs) are thought to have therapeutic potential, but little is known about the differences according to their origin. In the current study, we investigated the therapeutic effects and safety of intravenous injection of allogeneic bone marrow-derived MSCs (BM-MSCs) and adipose-derived stem cells (ADSCs) in a rat model of HI brain injury. HI models were generated by ligating the left carotid artery of postnatal day 7 Wistar/ST rats and exposing them to 8% hypoxia for 60 min. Bone marrow and adipose tissue were harvested from adult green fluorescent protein transgenic Wistar rats, and cells were isolated and cultured to develop BM-MSCs and ADSCs. At passaging stages 2–3, 1 × 105 cells were intravenously injected into the external right jugular vein of the HI rats at 4 or 24 h after hypoxia. Brain damage was evaluated by counting the number of cells positive for active caspase-3 in the entire dentate gyrus. Microglial isotypes and serum cytokines/chemokines were also evaluated. Distribution of each cell type after intravenous injection was investigated pathologically and bio-optically by ex vivo imaging (IVIS®) with a fluorescent lipophilic tracer DiR. The mortality rate was higher in the ADSC group compared to the BM-MSC group, in pups injected with cells 4 h after hypoxia. The number of active caspase-3-positive cells significantly decreased in the BM-MSC group, and the percentage of M1 microglia (a proinflammatory isotype) was also lower in the BM-MSC vs control group in the penumbra of the cortex. Moreover, BM-MSC administration increased anti-inflammatory cytokine and growth factor levels, while ADSCs did not. Each injected cell type was mainly distributed in the lungs and liver, but ADSCs remained in the lungs longer. Pathologically, pulmonary embolisms and diffuse alveolar hemorrhages were seen in the ADSC group. These results indicated that injection of allogeneic BM-MSCs ameliorated neonatal HI brain injury, whereas ADSCs induced severe lung hemorrhage and higher mortality

    Evidence-based bioethics: delineating the connections between science, practice, and values in medicine.

    Get PDF
    <p><b>A.</b> Secretion of FABP5 from adipose-derived stem cells (ADSC) after adipocyte differentiation at Day 0, Day 4 and Day 8 (n = 4 in each). Values were normalized to total protein concentration of the cell lysate. *P < 0.05 vs. Day 0. <b>B.</b> Flowchart of microarray analysis in ADSC treated with 1 μM recombinant FABP5 for 24 h. <b>C.</b> Gene ontology (GO) enrichment analysis. Significantly (Z-score > 0, P < 0.05) upregulated and downregulated GO terms of three GO categories, including cellular component, molecular function and biological process, were picked up and listed by a sort of lower P-value in each category. The abscissa of the bar plot was the number of annotated genes within the GO category. <b>D.</b> Cascade of the protein-protein interaction (PPI) network using a transcription factor binding site search data.</p

    Two-year follow up of silodosin on lower urinary tract functions and symptoms in patients with benign prostatic hyperplasia based on prostate size: a prospective investigation using urodynamics

    No full text
    Background: The aim of this research was to investigate intermediate-term effects of silodosin on lower urinary tract functions and symptoms in patients with lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH) according to prostate size, using urodynamics. Methods: A total of 70 untreated outpatients with a prostate volume 40 ml) in the intermediate term
    corecore