35,122 research outputs found

    On an acoustic field generated by subsonic jet at low Reynolds numbers

    Get PDF
    An acoustic field generated by subsonic jets at low Reynolds numbers was investigated. This work is motivated by the need to increase the fundamental understanding of the jet noise generation mechanism which is essential to the development of further advanced techniques of noise suppression. The scope of this study consists of two major investigation. One is a study of large scale coherent structure in the jet turbulence, and the other is a study of the Reynolds number dependence of jet noise. With this in mind, extensive flow and acoustic measurements in low Reynolds number turbulent jets (8,930 less than or equal to M less than or equal to 220,000) were undertaken using miniature nozzles of the same configuration but different diameters at various exist Mach numbers (0.2 less than or equal to M less than or equal to 0.9)

    Dynamics of Quasi-ordered Structure in a Regio-regulated pi-Conjugated Polymer:Poly(4-methylthiazole-2,5-diyl)

    Full text link
    Dynamics of regio-regulated Poly(4-methylthiazole-2,5-diyl) [HH-P4MeTz] was inves tigated by solid-state 1H, 2D, 13C NMR spectroscopies, and differential scanning calorimetry(DSC) measurements. DSC, 2D quadrupolar echo NMR, 13C cross-polarization and magic-angle spinning(CPMAS) NMR, and 2D spin-echo(2DSE) CPMAS NMR spectroscopy suggest existence of a quasi-ordered phase in which backbone twists take place with weakened pi-stackings. Two-dimensional exchange 2D NMR(2DEX) detected slow dynamics with a rate of an order of 10^2Hz for the CD_3 group in d_3-HH-P4MeTz at 288K. The frequency dependence of proton longitudinal relaxation rate at 288K shows a omega^-1/2 dependence, which is due to the one-dimensional diffusion-like motion of backbone conformational modulation waves. The diffusion rate was estimated as 3+/-2 GHz, which was approximately 10^7 times larger than that estimated by 2DEX NMR measurements. These results suggest that there exists anomalous dispersion of modulation waves in HH-P4MeTz. The one-dimensional group velocity of the wave packet is responsible for the behavior of proton longitudinal relaxation time. On the other hand, the 2DEX NMR is sensitive to phase velocity of the nutation of methyl groups that is associated with backbone twists. From proton T_1 and T_2 measurements, the activation energy was estimated as 2.9 and 3.4 kcal/mol, respectively. These were in agreement with 3.0 kcal/mol determined by Moller-Plesset(MP2) molecular orbital(MO) calculation. We also performed chemical shielding calculation of the methyl-carbon in order to understand chemical shift tensor behavior, leading to the fact that a quasi-ordered phase coexist with the crystalline phase.Comment: 14 pages, 11 figures, to appear in Phys.Rev.

    Robust observer for uncertain linear quantum systems

    Get PDF
    In the theory of quantum dynamical filtering, one of the biggest issues is that the underlying system dynamics represented by a quantum stochastic differential equation must be known exactly in order that the corresponding filter provides an optimal performance; however, this assumption is generally unrealistic. Therefore, in this paper, we consider a class of linear quantum systems subjected to time-varying norm-bounded parametric uncertainties and then propose a robust observer such that the variance of the estimation error is guaranteed to be within a certain bound. Although in the linear case much of classical control theory can be applied to quantum systems, the quantum robust observer obtained in this paper does not have a classical analogue due to the system's specific structure with respect to the uncertainties. Moreover, by considering a typical quantum control problem, we show that the proposed robust observer is fairly robust against a parametric uncertainty of the system even when the other estimators--the optimal Kalman filter and risk-sensitive observer--fail in the estimation.Comment: 11 pages, 1 figur

    Elementary Excitations of Heisenberg Ferrimagnetic Spin Chains

    Full text link
    We numerically investigate elementary excitations of the Heisenberg alternating-spin chains with two kinds of spins 1 and 1/2 antiferromagnetically coupled to each other. Employing a recently developed efficient Monte Carlo technique as well as an exact diagonalization method, we verify the spin-wave argument that the model exhibits two distinct excitations from the ground state which are gapless and gapped. The gapless branch shows a quadratic dispersion in the small-momentum region, which is of ferromagnetic type. With the intention of elucidating the physical mechanism of both excitations, we make a perturbation approach from the decoupled-dimer limit. The gapless branch is directly related to spin 1's, while the gapped branch originates from cooperation of the two kinds of spins.Comment: 7 pages, 7 Postscript figures, RevTe

    The clinical significance of the arterial ketone body ratio as an early indicator of graft viabilityin human liver transplantation

    Get PDF
    Arterial ketone body ratio (AKBR) was measured sequentially in 84 liver transplantations (OLTx). These transplantation procedures were classified into 3 groups with respect to graft survival and patient condition at the end of the first month (Group A, the grafts survived longer than 1 month with satisfactory patient condition; Group B, the grafts survived longer than 1 month but the patients were ICU-bound; Group C, the grafts were lost and the patients died or underwent re-OLTx). In Group A, the AKBR was elevated to above 1.0 by the second postoperative day. In Group B, the AKBR was elevated to above 0.7 but stayed below 1.0 during this period. In Group C, the AKBR remained below 0.7 longer than 2 days after operation. Although conventional liver function tests showed significant increases in Groups B and C as compared with Group A, they were less specific in predicting ultimate graft survival. © 1991 by Williams & Wilkins

    A Simulation Method to Resolve Hydrodynamic Interactions in Colloidal Dispersions

    Get PDF
    A new computational method is presented to resolve hydrodynamic interactions acting on solid particles immersed in incompressible host fluids. In this method, boundaries between solid particles and host fluids are replaced with a continuous interface by assuming a smoothed profile. This enabled us to calculate hydrodynamic interactions both efficiently and accurately, without neglecting many-body interactions. The validity of the method was tested by calculating the drag force acting on a single cylindrical rod moving in an incompressible Newtonian fluid. This method was then applied in order to simulate sedimentation process of colloidal dispersions.Comment: 7pages, 7 figure
    corecore