408 research outputs found

    Antiferromagnetism in two-dimensional t-J model: pseudospin representation

    Full text link
    We discuss a pseudospin representation of the two-dimensional t-J model. We introduce pseudospins associated with empty sites, deriving a new representation of the t-J model that consists of local spins and spinless fermions. We show, within a mean-field approximation, that our representation of t-J model corresponds to the {\it isotropic} antiferromagnetic Heisenberg model in an effective magnetic field. The strength and the direction of the effective field are determined by the hole doping δ{\delta} and the orientation of pseudospins associated with empty sites, respectively. We find that the staggered magnetization in the standard representation corresponds to the component of magnetization perpendicular to the effective field in our pseudospin representation. Using a many-body Green's function method, we show that the staggered magnetization decreases with increasing hole doping δ{\delta} and disappears at δ0.060.15{\delta \approx 0.06-0.15} for t/J=25t/J=2-5. Our results are in good agreement with experiments and numerical calculations in contradistinction to usual mean-field methods.Comment: 6 pages, 3 figure

    A rare sugar, allose, inhibits the development of Plasmodium parasites in the Anopheles mosquito independently of midgut microbiota

    Get PDF
    A rare sugar, allose, was reported to inhibit the development of Plasmodium parasites in Anopheles mosquitoes; however, the mechanism remains unknown. The present study addressed the inhibitory mechanism of allose on the development of the Plasmodium parasite by connecting it with bacteria involvement in the midgut. In addition, further inhibitory sugars against Plasmodium infection in mosquitoes were explored. Antibiotic-treated and antibiotic-untreated Anopheles stephensi were fed fructose with or without allose. The mosquitoes were infected with luciferase-expressing Plasmodium berghei, and parasite development was evaluated by luciferase activity. Bacterial composition analysis in gut of their mosquitoes was performed with comprehensive 16S ribosomal RNA sequencing. As the result, allose inhibited the development of oocysts in mosquitoes regardless of prior antibiotic treatment. Microbiome analysis showed that the midgut bacterial composition in mosquitoes before and after blood feeding was not affected by allose. Although allose inhibited transient growth of the midgut microbiota of mosquitoes after blood feeding, neither toxic nor inhibitory effects of allose on the dominant midgut bacteria were observed. Ookinete development in the mosquito midgut was also not affected by allose feeding. Additional 15 sugars including six monosaccharides, four polyols, and five polysaccharides were tested; however, no inhibitory effect against Plasmodium development in mosquitoes was observed. These results indicated that allose inhibits parasite development in midgut stage of the mosquito independently of midgut microbiota. Although further studies are needed, our results suggest that allose may be a useful material for the vector control of malaria as a “transmission-blocking sugar.

    Current status of Japanese detectors

    Full text link
    Current status of TAMA and CLIO detectors in Japan is reported in this article. These two interferometric gravitational-wave detectors are being developed for the large cryogenic gravitational wave telescope (LCGT) which is a future plan for detecting gravitational wave signals at least once per year. TAMA300 is being upgraded to improve the sensitivity in low frequency region after the last observation experiment in 2004. To reduce the seismic noises, we are installing new seismic isolation system, which is called TAMA Seismic Attenuation System, for the four test masses. We confirmed stable mass locks of a cavity and improvements of length and angular fluctuations by using two SASs. We are currently optimizing the performance of the third and fourth SASs. We continue TAMA300 operation and R&D studies for LCGT. Next data taking in the summer of 2007 is planned. CLIO is a 100-m baseline length prototype detector for LCGT to investigate interferometer performance in cryogenic condition. The key features of CLIO are that it locates Kamioka underground site for low seismic noise level, and adopts cryogenic Sapphire mirrors for low thermal noise level. The first operation of the cryogenic interferometer was successfully demonstrated in February of 2006. Current sensitivity at room temperature is close to the target sensitivity within a factor of 4. Several observation experiments at room temperature have been done. Once the displacement noise reaches at thermal noise level of room temperature, its improvement by cooling test mass mirrors should be demonstrated.Comment: 6 pages, 5 figures, Proceedings of GWDAW-1

    Reduction of thermal fluctuations in a cryogenic laser interferometric gravitational wave detector

    Full text link
    The thermal fluctuation of mirror surfaces is the fundamental limitation for interferometric gravitational wave (GW) detectors. Here, we experimentally demonstrate for the first time a reduction in a mirror's thermal fluctuation in a GW detector with sapphire mirrors from the Cryogenic Laser Interferometer Observatory at 17\,K and 18\,K. The detector sensitivity, which was limited by the mirror's thermal fluctuation at room temperature, was improved in the frequency range of 90\,Hz to 240\,Hz by cooling the mirrors. The improved sensitivity reached a maximum of 2.2×1019m/Hz2.2 \times 10^{-19}\,\textrm{m}/\sqrt{\textrm{Hz}} at 165\,Hz.Comment: Accepted for publication in Physical Review Letters, 5 pages, 2 figure

    Kinetic study of the reaction of leuco methylene blue with 2,6-dimethyl-p-benzoquinone in a reverse micellar system

    Get PDF
    The kinetics of the reaction of leuco methylene blue (MBH) with 2,6-dimethyl-p-benzoquinone (DMBQ) were studied in a heptane/bis(2-ethylhexyl)-sulfosuccinate (AOT)/water reverse micellar system. The pseudo-first-order rate constant (k (obsd)) obtained in the presence of excess of DMBQ was found to be proportional to the initial concentration of DMBQ for W (0)=3, 5, 10, 15 and 20 (W (0)=[H2O]/[AOT]). The second-order rate constant (k (2)=k (obsd)/[DMBQ](0)) increased with an increase in the W (0) value, but was almost independent of the concentration of the water pool. A mechanism involving the distribution of DMBQ between the reverse micellar interface and bulk organic solvent was proposed to explain these findings.</p

    Optimal Location of Two Laser-interferometric Detectors for Gravitational Wave Backgrounds at 100 MHz

    Full text link
    Recently, observational searches for gravitational wave background (GWB) have been developed and given constraints on the energy density of GWB in a broad range of frequencies. These constraints have already resulted in the rejection of some theoretical models of relatively large GWB spectra. However, at 100 MHz, there is no strict upper limit from direct observation, though an indirect limit exists due to He4 abundance due to big-bang nucleosynthesis. In our previous paper, we investigated the detector designs that can effectively respond to GW at high frequencies, where the wavelength of GW is comparable to the size of a detector, and found that the configuration, a so-called synchronous-recycling interferometer is best at these sensitivity. In this paper, we investigated the optimal location of two synchronous-recycling interferometers and derived their cross-correlation sensitivity to GWB. We found that the sensitivity is nearly optimized and hardly changed if two coaligned detectors are located within a range 0.2 m, and that the sensitivity achievable in an experiment is far below compared with the constraint previously obtained in experiments.Comment: 17 pages, 6 figure

    Thick domain walls around a black hole

    Full text link
    We discuss the gravitationally interacting system of a thick domain wall and a black hole. We numerically solve the scalar field equation in the Schwarzschild spacetime and obtain a sequence of static axi-symmetric solutions representing thick domain walls. We find that, for the walls near the horizon, the Nambu--Goto approximation is no longer valid.Comment: 18 pages, 11 figures, one reference adde

    FcɛRI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane

    Get PDF
    The aggregation of high affinity IgE receptors (Fcɛ receptor I [FcɛRI]) on mast cells is potent stimulus for the release of inflammatory and allergic mediators from cytoplasmic granules. However, the molecular mechanism of degranulation has not yet been established. It is still unclear how FcɛRI-mediated signal transduction ultimately regulates the reorganization of the cytoskeleton and how these events lead to degranulation. Here, we show that FcɛRI stimulation triggers the formation of microtubules in a manner independent of calcium. Drugs affecting microtubule dynamics effectively suppressed the FcɛRI-mediated translocation of granules to the plasma membrane and degranulation. Furthermore, the translocation of granules to the plasma membrane occurred in a calcium-independent manner, but the release of mediators and granule–plasma membrane fusion were completely dependent on calcium. Thus, the degranulation process can be dissected into two events: the calcium-independent microtubule-dependent translocation of granules to the plasma membrane and calcium-dependent membrane fusion and exocytosis. Finally, we show that the Fyn/Gab2/RhoA (but not Lyn/SLP-76) signaling pathway plays a critical role in the calcium-independent microtubule-dependent pathway

    Adenovirus-prime and baculovirus-boost heterologous immunization achieves sterile protection against malaria sporozoite challenge in a murine model.

    Get PDF
    With the increasing prevalence of artemisinin-resistant malaria parasites, a highly efficacious and durable vaccine for malaria is urgently required. We have developed an experimental virus-vectored vaccine platform based on an envelope-modified baculovirus dual-expression system (emBDES). Here, we show a conceptually new vaccine platform based on an adenovirus-prime/emBDES-boost heterologous immunization regimen expressing the Plasmodium falciparum circumsporozoite protein (PfCSP). A human adenovirus 5-prime/emBDES-boost heterologous immunization regimen consistently achieved higher sterile protection against transgenic P. berghei sporozoites expressing PfCSP after a mosquito-bite challenge than reverse-ordered or homologous immunization. This high protective efficacy was also achieved with a chimpanzee adenovirus 63-prime/emBDES-boost heterologous immunization regimen against an intravenous sporozoite challenge. Thus, we show that the adenovirus-prime/emBDES-boost heterologous immunization regimen confers sterile protection against sporozoite challenge by two individual routes, providing a promising new malaria vaccine platform for future clinical use
    corecore