21 research outputs found
Eicosapentaenoic Acid Suppresses the Proliferation of Synoviocytes from Rheumatoid Arthritis
Eicosapentaenoic acid (EPA) is essential for normal cell growth, and may play an important role in inflammatory and autoimmune disorders including rheumatoid arthritis. We investigate that EPA could suppress the proliferation of fibroblast like synoviocytes in vitro. We treated synoviocytes with 1 to 50 µM EPA and measured cell viabilities by the modified MTT assay. We sorted the number of them in sub G1 stage by fluorescence-activated cell sorting caliber. And we stained them by light green or Hoechst 33258, and investigate microscopic appearance. The cell viabilities were decreased at 30 µM, 40 µM, and 50 µM of EPA comparing to 0 µM of EPA. The half maximal concentration of synoviocytes inhibition was approximately 25 µM. At day 1 and day 3, cell number was also decreased at 50 µM EPA comparing to control. FACS caliber indicated the number of synoviocytes in sub G1 stage did not increase in each concentration of EPA. Hoechst staining indicated normal chromatin pattern and no change in a nuclear morphology both in EPA treated synoviocytes and in untreated synoviocytes. These findings suggest that EPA could suppress the proliferation of synoviocytes in vivo dose dependently and time dependently, however, the mechanism is not due to apoptosis
Loxoprofen Sodium, a Non-Selective NSAID, Reduces Atherosclerosis in Mice by Reducing Inflammation
Recently, it is suggested that the use of nonsteroidal anti-inflammatory drugs (NSAID) may contribute to the occurrence of cardiovascular events, while the formation of atherosclerotic lesions is related to inflammation. Loxoprofen sodium, a non-selective NSAID, becomes active after metabolism in the body and inhibits the activation of cyclooxygenase. We fed apoE−/− mice a western diet from 8 to 16 weeks of age and administered loxoprofen sodium. We measured atherosclerotic lesions at the aortic root. We examined serum levels of cholesterol and triglycerides with HPLC, platelet aggregation, and urinary prostaglandin metabolites with enzyme immune assay. Atherosclerotic lesion formation was reduced to 63.5% and 41.5% as compared to the control in male and female apoE−/− mice treated with loxoprofen sodium respectively. Urinary metabolites of prostaglandin E2, F1α, and thromboxane B2, and platelet aggregation were decreased in mice treated with loxoprofen sodium. Serum levels of cholesterol and triglycerides were not changed. We conclude that loxoprofen sodium reduced the formation of early to intermediate atherosclerotic lesions at the proximal aorta in mice mediated by an anti-inflammatory effect
Feedback Control of the Arachidonate Cascade in Osteoblastic Cells by 15-deoxy-Δ12,14-Prostaglandin J2
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and an anti-diabetic thiazolidinedione, troglitazone (TRO) are peroxisome proliferator-activated receptor (PPAR)-γ ligands, which regulate immuno-inflammatory reactions as well as adipocyte differentiation. We previously reported that 15d-PGJ2 can suppress interleukin (IL)-1β-induced prostaglandin E2 (PGE2) synthesis in synoviocytes of rheumatoid arthritis (RA). IL-1 also stimulates PGE2 synthesis in osteoblasts by regulation of cyclooxygenase (COX)-2 and regulates osteoclastic bone resorption in various diseases such as RA and osteoporosis. In this study, we investigated the feedback mechanism of the arachidonate cascade in mouse osteoblastic cells, MC3T3-E1 cells, which differentiate into mature osteoblasts. Treatment with 15d-PGJ2 led to a significant increase in IL-1α-induced COX-2 expression and PGE2 production in a dose dependent manner. The effect of 15d-PGJ2 was stronger than that of TRO. However, it did not affect the expression of COX-1. In addition, cell viability of MC3T3-E1 cells was not changed in the condition we established. This means that 15d-PGJ2 exerts a positive feedback regulation of the arachidonate cascade of PGE2 in osteoblastic cells. These results may provide important information about the pathogenesis and treatment of bone resorption in a variety of diseases such as RA and osteoporosis
15-Deoxy-Δ12,14 Prostaglandin J2 Reduces the Formation of Atherosclerotic Lesions in Apolipoprotein E Knockout Mice
AIM: 15-deoxy-Δ¹²,¹⁴ prostaglandin J₂ (15d-PGJ₂) is a ligand of peroxisome proliferator-activated receptor γ (PPARγ) having diverse effects such as the differentiation of adipocytes and atherosclerotic lesion formation. 15d-PGJ₂ can also regulate the expression of inflammatory mediators on immune cells independent of PPARγ. We investigated the antiatherogenic effect of 15d-PGJ₂. METHODS: We fed apolipoprotein (apo) E-deficient female mice a Western-type diet from 8 to 16 wk of age and administered 1 mg/kg/day 15d-PGJ₂ intraperitoneally. We measured atherosclerotic lesions at the aortic root, and examined the expression of macrophage and inflammatory atherosclerotic molecules by immunohistochemical and real-time PCR in the lesion. RESULTS: Atherosclerotic lesion formation was reduced in apo E-null mice treated with 15d-PGJ₂, as compared to in the controls. Immunohistochemical and real-time PCR analyses showed that the expression of MCP-1, TNF-α, and MMP-9 in atherosclerotic lesions was significantly decreased in 15d-PGJ₂ treated mice. The 15d-PGJ₂ also reduced the expression of macrophages and RelA mRNA in atherosclerotic lesions. CONCLUSION: This is the first report 15d-PGJ₂, a natural PPARγ agonist, can improve atherosclerotic lesions in vivo. 15d-PGJ₂ may be a beneficial therapeutic agent for atherosclerosis
Serum lipid levels in the controls and the 15d-PGJ<sub>2</sub> group.
<p>Blood was collected from the cardiac cavity of mice aged 16 wk and analyzed for the lipid profile. The plasma chylomicron (CM) (B), very low density lipoprotein (VLDL) (C), low density lipoprotein (LDL) (D), and high density lipoprotein (HDL) (E) levels were determined by use of a high-sensitivity lipoprotein-profiling system by high-performance liquid chromatography. The total serum cholesterol level (A) was significantly lower in the15d-PGJ<sub>2</sub> group than in the control group (795.5±39.31 mg/dl vs 944.1±49.04 mg/dl, <i>p</i> = 0.029). Especially LDL was significantly reduced in the 15d-PGJ<sub>2</sub> group (186.9±13.49 mg/dl vs 234.3±16.60 mg/dl, <i>p</i> = 0.0397). CM, VLDL and HDL were not different between the control and 15d-PGJ<sub>2</sub> groups, 36.96±4.999 mg/dl vs 68.13±23.98 mg/dl, 553.5±26.67 mg/dl vs 622.7±28.02 mg/dl, 18.14±1.264 mg/dl vs 19.01±2.562 mg/dl, respectively. *<i>p</i><0.05, with Student's <i>t</i> test.</p
Representative sections with immunohistochemical analysis.
<p>Apo E-knockout mice were fed a Western-type diet and treated with PBS (control group) (n = 10) or 1 mg/kg/day 15d-PGJ<sub>2</sub> (15d-PGJ<sub>2</sub> group) (n = 10) for 2 mo. Representative cross-sections of the aortic sinus were stained with MOMA-2 (A), which detected macrophages, and MCP-1 Abs (B), MIF Abs (C), TNF-α Abs (D), MMP-9 Abs (E), PPARγ Abs (F), and counterstained with hematoxylin. Right sections are control group and left ones are 15d-PGJ<sub>2</sub> group in each figure. Black arrows indicate the positive lesions.</p