42 research outputs found

    Types of Damages in Fission-Neutron Irradiated Cu and Cu Dilute Alloys at 200℃

    Get PDF
    The damage structures in Cu and Cu based alloys neutron-irradiated at 200℃ were examined by transmission electron microscopy. Large dislocation loops of complex structure and small dot defects were formed in the specimens. The large dislocation loops were interstitial type. On the other hand, the small dot defects were vacancy type. They were stacking faulted tetrahedra. The damage structure in these metals evolves as follows. Interstitial atoms produced by neutron irradiation aggregate and grow to large complicated loops which will become finally dislocation lines by intersection of them with further irradiation, by absorbing interstitials subsequently produced. By the consumption of the interstitials to the sinks, vacancy concentration increases locally to be high enough to form vacancy defects

    An angiogenic role for adrenomedullin in choroidal neovascularization.

    Get PDF
    PURPOSE: Adrenomedullin (ADM) has been shown to take part in physiological and pathological angiogenesis. The purpose of this study was to investigate whether ADM signaling is involved in choroidal neovascularization (CNV) using a mouse model. METHODS AND RESULTS: CNV was induced by laser photocoagulation in 8-week-old C57BL/6 mice. ADM mRNA expression significantly increased following treatment, peaking 4 days thereafter. The expression of ADM receptor (ADM-R) components (CRLR, RAMP2 and RAMP 3) was higher in CD31(+)CD45(-) endothelial cells (ECs) than CD31(-)CD45(-) non-ECs. Inflammatory stimulation upregulated the expression of ADM not only in cell lines but also in cells in primary cultures of the choroid/retinal pigment epithelium complex. Supernatants from TNFα-treated macrophage cell lines potentiated the proliferation of ECs and this was partially suppressed by an ADM antagonist, ADM (22-52). Intravitreous injection of ADM (22-52) or ADM neutralizing monoclonal antibody (mAb) after laser treatment significantly reduced the size of CNV compared with vehicle-treated controls (p<0.01). CONCLUSIONS: ADM signaling is involved in laser-induced CNV formation, because both an ADM antagonist and ADM mAb significantly inhibited it. Suppression of ADM signaling might be a valuable alternative treatment for CNV associated with age-related macular degeneration

    An Angiogenic Role for Adrenomedullin in Choroidal Neovascularization

    Get PDF
    金沢大学医薬保健研究域医学系Purpose: Adrenomedullin (ADM) has been shown to take part in physiological and pathological angiogenesis. The purpose of this study was to investigate whether ADM signaling is involved in choroidal neovascularization (CNV) using a mouse model. Methods and Results: CNV was induced by laser photocoagulation in 8-week-old C57BL/6 mice. ADM mRNA expression significantly increased following treatment, peaking 4 days thereafter. The expression of ADM receptor (ADM-R) components (CRLR, RAMP2 and RAMP 3) was higher in CD31+CD45- endothelial cells (ECs) than CD31-CD45- non-ECs. Inflammatory stimulation upregulated the expression of ADM not only in cell lines but also in cells in primary cultures of the choroid/retinal pigment epithelium complex. Supernatants from TNFα-treated macrophage cell lines potentiated the proliferation of ECs and this was partially suppressed by an ADM antagonist, ADM (22-52). Intravitreous injection of ADM (22-52) or ADM neutralizing monoclonal antibody (mAb) after laser treatment significantly reduced the size of CNV compared with vehicle-treated controls (p&lt;0.01). Conclusions: ADM signaling is involved in laser-induced CNV formation, because both an ADM antagonist and ADM mAb significantly inhibited it. Suppression of ADM signaling might be a valuable alternative treatment for CNV associated with age-related macular degeneration. © 2013 Sakimoto et al

    In vitro effect of an ADM antagonist.

    No full text
    <p>(A) qRT–PCR analysis of ADM mRNA expression after 12 hr TNF-α or LPS stimulation of cells, as indicated (n = 3, *P<0.01). (B) EC proliferation assay using bEND.3 which was incubated with or without supernatant from TNF-α-stimulated RAW 264.7 in the presence or absence of the ADM antagonist ADM (22–52). The white bar indicates the PBS group, gray indicates the 1 µM ADM (22–52) group and black the 5 µM ADM (22–52) group. ECs in all groups were incubated with supernatant from RAW 264.7 cells except for RAW 264.7 (-) groups (culture medium without supernatant of RAW 264.7 cells). 1 µM SU1498 was added to indicated groups (n = 3, **P<0.01, *P<0.05). (C) qRT–PCR analysis of ADM mRNA expression after 12 and 24 hr TNF-α stimulation of primary RPE/choroid cultures (n = 3, *P<0.05). (D) ELISA of secreted ADM from primary RPE/choroid cultures after stimulation with 50 ng/ml TNF-α or culture with PBS alone (*P<0.05) (E, F) Appearance of primary RPE/choroid cultures after stimulation with PBS (E) or 50 ng/ml TNF-α(F). Scale bar: 100 µm.</p

    ADM expression after laser treatment.

    No full text
    <p>(A) Time course ADM mRNA expression by qRT–PCR analysis in the RPE/choroid complex after laser treatment. Results are shown as fold-increase in comparison with RPE/choroid complexes from sham-operated eyes. (B) qRT–PCR analysis of ADM mRNA expression in sorted CD31<sup>+</sup> cells (EC-enriched cell population), CD11b<sup>+</sup> cells (monocyte/macrophage lineage cells) and cells negative for either CD31 or CD11b (non-EC, non-monocyte/macrophage lineage fraction) 3 days after laser treatment (n≧5). (C) qRT–PCR analysis of ADM mRNA expression in sorted CD31<sup>+</sup> cells after laser treatment (CNV) compared to sham-treated eye<b>s</b> (sham). (n≧5, *P<0.05) (D) qRT–PCR analysis of ADM mRNA expression in sorted CD11b<sup>+</sup> cells after laser treatment compared to sham-treated eyes. (n≧5, *P<0.05).</p
    corecore