5 research outputs found

    Visualization of the entire differentiation process of murine M cells : suppression of their maturation in cecal patches

    Get PDF
    The microfold (M) cell residing in the follicle-associated epithelium is a specialized epithelial cell that initiates mucosal immune responses by sampling lumina! antigens. The differentiation process of M cells remains unclear due to limitations of analytical methods. Here we found that M cells were classified into two functionally different subtypes based on the expression of Glycoprotein 2 (GP2) by newly developed image cytometric analysis. GP2-high M cells actively took up luminal microbeads, whereas GP2-negative or low cells scarcely ingested them, even though both subsets equally expressed the other M-cell signature genes, suggesting that GP2-high M cells represent functionally mature M cells. Further, the GP2-high mature M cells were abundant in Peyer's patch but sparse in the cecal patch: this was most likely due to a decrease in the nuclear translocation of RelB, a downstream transcription factor for the receptor activator of nuclear factor-kappa B signaling. Given that murine cecum contains a protrusion of beneficial commensals, the restriction of M-cell activity might contribute to preventing the onset of any excessive immune response to the commensals through decelerating the M-cell-dependent uptake of microorganisms

    Distinct Roles for the N- and C-terminal Regions of M-Sec in Plasma Membrane Deformation during Tunneling Nanotube Formation

    Get PDF
    The tunneling nanotube (TNT) is a structure used for intercellular communication, and is a thin membrane protrusion mediating transport of various signaling molecules and cellular components. M-Sec has potent membrane deformation ability and induces TNT formation in cooperation with the Ral/exocyst complex. Here, we show that the N-terminal polybasic region of M-Sec directly binds phosphatidylinositol (4,5)-bisphosphate for its localization to the plasma membrane during the initial stage of TNT formation. We further report a crystal structure of M-Sec, which consists of helix bundles arranged in a straight rod-like shape, similar to the membrane tethering complex subunits. A positively charged surface in the C-terminal domains is required for M-Sec interaction with active RalA to extend the plasma membrane protrusions. Our results suggest that the membrane-associated M-Sec recruits active RalA, which directs the exocyst complex to form TNTs

    Crystallization and preliminary neutron diffraction studies of HIV-1 protease cocrystallized with inhibitor KNI-272

    No full text
    In order to determine the protonation states of the residues within the active site of an HIV-1 protease–inhibitor complex, a crystal of HIV-1 protease complexed with inhibitor (KNI-272) was grown to a size of 1.4 mm3 for neutron diffraction study. The crystal diffracted to 2.3 Å resolution with sufficient quality for further structure determination
    corecore