1,675 research outputs found

    Superconductivity Driven by the Interband Coulomb Interaction and Implications for the Superconducting Mechanism of MgB2

    Full text link
    Superconducting mechanism mediated by interband exchange Coulomb repulsion is examined in an extended two-band Hubbard models with a wide band crossing the Fermi level and coexisting with a narrower band located at moderately lower energy. We apply newly developed path-integral renormalization group method to reliably calculate pairing correlations. The correlation shows marked enhancement at moderate amplitudes of the exchange Coulomb repulsion taken smaller than the on-site repulsion for the narrower band. The pairing symmetry is s-wave while it has unconventional phases with the opposite sign between the order parameters on the two bands, in agreement with the mean-field prediction. Since the band structure of recently discovered superconductor MgB2_2 shares basic similarities with our model, we propose that the present results provide a relevant clue for the understanding of the superconducting mechanism in MgB2_2 as well as in this class of multi-band materials with good metallic conduction in the normal state.Comment: 4pages, 2figure

    Partial Kondo screening in frustrated Kondo lattice systems

    Full text link
    We investigate the effect of geometrical frustration on the competition between the Kondo coupling and the Ruderman-Kittel-Kasuya-Yosida interaction in Kondo lattice systems. By variational Monte Carlo simulations, we reveal an emergent quantum phase with partial ordering in which the frustration is relieved by forming a magnetic order on a sublattice and leaving the rest in the Kondo screening with spin-singlet formation. The role of quantum fluctuations and spin-charge interplay is elucidated.Comment: 5 pages, 4 figures, accepted for the publication in Phys. Rev. Lett.; (v2) minor correction

    Phason modes in spin-density wave in the presence of long-range Coulomb interaction

    Full text link
    We study the effect of long-range Coulomb interaction on the phason in spin-density wave (SDW) within mean field theory. In the longitudinal limit and in the absence of SDW pinning the phason is completely absorbed by the plasmon due to the Anderson-Higgs mechanism. In the presence of SDW pinning or when the wave vector {\bf q} is tilted from the chain direction, though the plasmon still almost exhausts the optical sum rule, another optical mode appears at ω<2Δ(T)\omega < 2\Delta(T), with small optical weight. This low frequency mode below the SDW gap may be accessible to electron energy loss spectroscopy (EELS).Comment: 7 pages, Revtex 2.1, SZFKI 102/9

    Specific-heat study for ferromagnetic and antiferromagnetic phases in SrRu_{1-x}Mn_xO3

    Full text link
    Low-temperature electronic states in SrRu_{1-x}Mn_xO_3 for x <= 0.6 have been investigated by means of specific-heat C_p measurements. We have found that a jump anomaly observed in C_p at the ferromagnetic (FM) transition temperature for SrRuO_3 changes into a broad peak by only 5% substitution of Mn for Ru. With further doping Mn, the low-temperature electronic specific-heat coefficient gamma is markedly reduced from the value at x=0 (33 mJ/K^2 mol), in connection with the suppression of the FM phase as well as the enhancement of the resistivity. For x >= 0.4, gamma approaches to ~ 5 mJ/K^2 mol or less, where the antiferromagnetic order with an insulating feature in resistivity is generated. We suggest from these results that both disorder and reconstruction of the electronic states induced by doping Mn are coupled with the magnetic ground states and transport properties.Comment: 4 pages, 2 figures, submitted to the proceedings of ICM2009 (Karlsruhe

    Unconventional charge density wave in the organic conductor alpha-(BEDT-TTF)_2KHg(SCN)_4

    Get PDF
    The low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 salt is known for its surprising angular dependent magnetoresistance (ADMR), which has been studied intensively in the last decade. However, the nature of the LTP has not been understood until now. Here we analyse theoretically ADMR in unconventional (or nodal) charge density wave (UCDW). In magnetic field the quasiparticle spectrum in UCDW is quantized, which gives rise to spectacular ADMR. The present model accounts for many striking features of ADMR data in alpha-(BEDT-TTF)_2KHg(SCN)_4.Comment: 5 pages, 6 figure

    Nuclear fission: The "onset of dissipation" from a microscopic point of view

    Get PDF
    Semi-analytical expressions are suggested for the temperature dependence of those combinations of transport coefficients which govern the fission process. This is based on experience with numerical calculations within the linear response approach and the locally harmonic approximation. A reduced version of the latter is seen to comply with Kramers' simplified picture of fission. It is argued that for variable inertia his formula has to be generalized, as already required by the need that for overdamped motion the inertia must not appear at all. This situation may already occur above T=2 MeV, where the rate is determined by the Smoluchowski equation. Consequently, comparison with experimental results do not give information on the effective damping rate, as often claimed, but on a special combination of local stiffnesses and the friction coefficient calculated at the barrier.Comment: 31 pages, LaTex, 9 postscript figures; final, more concise version, accepted for publication in PRC, with new arguments about the T-dependence of the inertia; e-mail: [email protected]

    Quantum Monte Carlo diagonalization for many-fermion systems

    Full text link
    In this study we present an optimization method based on the quantum Monte Carlo diagonalization for many-fermion systems. Using the Hubbard-Stratonovich transformation, employed to decompose the interactions in terms of auxiliary fields, we expand the true ground-state wave function. The ground-state wave function is written as a linear combination of the basis wave functions. The Hamiltonian is diagonalized to obtain the lowest energy state, using the variational principle within the selected subspace of the basis functions. This method is free from the difficulty known as the negative sign problem. We can optimize a wave function using two procedures. The first procedure is to increase the number of basis functions. The second improves each basis function through the operators, eΔτHe^{-\Delta\tau H}, using the Hubbard-Stratonovich decomposition. We present an algorithm for the Quantum Monte Carlo diagonalization method using a genetic algorithm and the renormalization method. We compute the ground-state energy and correlation functions of small clusters to compare with available data
    corecore