178 research outputs found

    The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice

    Get PDF
    In order to respond to fluctuating zinc (Zn) in the environment, plants must have a system to control Zn homeostasis. However, how plants maintain an appropriate level of Zn during their growth and development is still poorly understood. In this study, we found that OsHMA3, a tonoplast-localized transporter for Zn/Cd, plays an important role in Zn homeostasis in rice. Accessions with the functional allele of OsHMA3 showed greater tolerance to high Zn than those with the non-functional allele based on root elongation test. A 67Zn-labeling experiment showed that accessions with loss of function of OsHMA3 had lower Zn accumulation in the roots but similar concentrations in the shoots compared with functional OsHMA3 accessions. When exposed to Zn-free growing medium, the concentration in the root cell sap was rapidly decreased in accessions with functional OsHMA3, but less dramatic changes were observed in non-functional accessions. A mobility experiment showed that more Zn in the roots was translocated to the shoots in accessions with functional OsHMA3. Higher expression levels of OsZIP4, OsZIP5, OsZIP8, and OsZIP10 were found in the roots of accessions with functional OsHMA3 in response to Zn deficiency. Taken together, our results indicate that OsHMA3 plays an important role in rice roots in both Zn detoxification and storage by sequestration into the vacuoles, depending on Zn concentration in the environment

    Theophylline suppresses interleukin-6 expression by inhibiting glucocorticoid receptor signaling in pre-adipocytes

    Get PDF
    Adipose tissues in obese individuals are characterized by a state of chronic low-grade inflammation. Pre-adipocytes and adipocytes in this state secrete pro-inflammatory adipokines, such as interleukin 6 (IL-6), which induce insulin resistance and hyperglycemia. Theophylline (1,3-dimethylxanthine) exerts anti-inflammatory effects, but its effects on pro-inflammatory adipokine secretion by pre-adipocytes and adipocytes have not been examined. In this study, we found that theophylline decreased IL-6 secretion by 3T3-L1 pre-adipocytes and mouse-derived primary pre-adipocytes. The synthetic glucocorticoid dexamethasone (DEX) induced IL-6 expression in 3T3-L1 pre-adipocytes, and this effect was suppressed by theophylline at the mRNA level. Knockdown of CCAAT/enhancer binding protein (C/EBP) δ inhibited DEX-induced IL-6 expression, and theophylline suppressed C/EBPδ expression. Furthermore, theophylline suppressed transcriptional activity of the glucocorticoid receptor (GR) through suppression of nuclear localization of GR. In vivo, glucocorticoid corticosterone treatment (100 μg/mL) increased fasting blood glucose and plasma IL-6 levels in C57BL/6 N mice. Theophylline administration (0.1% diet) reduced corticosterone-increased fasting blood glucose, plasma IL-6 levels, and Il6 gene expression in adipose tissues. These results show that theophylline administration attenuated glucocorticoid-induced hyperglycemia and IL-6 production by inhibiting GR activity. The present findings indicate the potential of theophylline as a candidate therapeutic agent to treat insulin resistance and hyperglycemia.ArticleARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS.646:98-106(2018)journal articl

    Update of HΦ\mathcal{H}\Phi: Newly added functions and methods in versions 2 and 3

    Full text link
    HΦ\mathcal{H}\Phi [aitchaitch-phiphi] is an open-source software package of numerically exact and stochastic calculations for a wide range of quantum many-body systems. In this paper, we present the newly added functions and the implemented methods in vers. 2 and 3. In ver. 2, we implement spectrum calculations by the shifted Krylov method, and low-energy excited state calculations by the locally optimal blocking preconditioned conjugate gradient (LOBPCG) method. In ver. 3, we implement the full diagonalization method using ScaLAPACK and GPGPU computing via MAGMA. We also implement a real-time evolution method and the canonical thermal pure quantum (cTPQ) state method for finite-temperature calculations. The Wannier90 format for specifying the Hamiltonians is also implemented. Using the Wannier90 format, it is possible to perform the calculations for the abab initioinitio low-energy effective Hamiltonians of solids obtained by the open-source software RESPACK. We also update Standard mode \unicode{x2014}simplified input format in HΦ\mathcal{H}\Phi\unicode{x2014} to use these functions and methods. We explain the basics of the implemented methods and how to use them.Comment: 21 pages, 10 figures, 2 table

    Kω — Open-source library for the shifted Krylov subspace method of the form (zI−H)x=b

    Get PDF
    We develop Kω, an open-source linear algebra library for the shifted Krylov subspace methods. The methods solve a set of shifted linear equations (zkI−H)x(k)=b(k=0,1,2,…) for a given matrix H and a vector b, simultaneously. The leading order of the operational cost is the same as that for a single equation. The shift invariance of the Krylov subspace is the mathematical foundation of the shifted Krylov subspace methods. Applications in materials science are presented to demonstrate the advantages of the algorithm over the standard Krylov subspace methods such as the Lanczos method. We introduce benchmark calculations of (i) an excited (optical) spectrum and (ii) intermediate eigenvalues by the contour integral on the complex plane. In combination with the quantum lattice solver HΦ, Kω can realize parallel computation of excitation spectra and intermediate eigenvalues for various quantum lattice models

    AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis

    Get PDF
    Ascorbate is an antioxidant and coenzyme for various metabolic reactions in vivo. In plant chloroplasts, high ascorbate levels are required to overcome photoinhibition caused by strong light. However, ascorbate is synthesized in the mitochondria and the molecular mechanisms underlying ascorbate transport into chloroplasts are unknown. Here we show that AtPHT4;4, a member of the phosphate transporter 4 family of Arabidopsis thaliana, functions as an ascorbate transporter. In vitro analysis shows that proteoliposomes containing the purified AtPHT4;4 protein exhibit membrane potential- and Cl-dependent ascorbate uptake. The AtPHT4;4 protein is abundantly expressed in the chloroplast envelope membrane. Knockout of AtPHT4;4 results in decreased levels of the reduced form of ascorbate in the leaves and the heat dissipation process of excessive energy during photosynthesis is compromised. Taken together, these observations indicate that the AtPHT4;4 protein is an ascorbate transporter at the chloroplast envelope membrane, which may be required for tolerance to strong light stress
    corecore