49 research outputs found

    Low temperature method for the production of calcium phosphate fillers

    Get PDF
    BACKGROUND: Calcium phosphate manufactured samples, prepared with hydroxyapatite, are used as either spacers or fillers in orthopedic surgery, but these implants have never been used under conditions of mechanical stress. Similar conditions also apply with cements. Many authors have postulated that cements are a useful substitute material when implanted in vivo. The aim of this research is to develop a low cristalline material similar to bone in porosity and cristallinity. METHODS: Commercial hydroxyapatite (HAp) and monetite (M) powders are mixed with water and compacted to produce cylindrical samples. The material is processed at a temperature of 37–120 degrees C in saturated steam to obtain samples that are osteoconductive. The samples are studied by X-ray powder diffraction (XRD), Vickers hardness test (HV), scanning electron microscopy (SEM), and porosity evaluation. RESULTS: The X-ray diffractions of powders from the samples show patterns typical of HAp and M powders. After thermal treatment, no new crystal phase is formed and no increase of the relative intensity of the peaks is obtained. Vicker hardness data do not show any relationship with treatment temperature. The total porosity decreases by 50–60% according to the specific thermal treatment. Scanning electron microscopy of the surfaces of the samples with either HAp 80%-M 20% (c) or Hap 50%-M 50% (f), show cohesion of the powder grains. CONCLUSIONS: The dissolution-reprecipitation process is more intesive in manufactured samples (c) and (f), according to Vickers hardness data. The process occurs in a steam saturated environment between 37 degrees and 120 degrees C. (c) (f) manufactured samples show pore dimension distributions useful to cellular repopulation in living tissues

    Celiprolol double-peak occurrence and gastric motility: Nonlinear mixed effects modeling of bioavailability data obtained in dogs

    Full text link
    Investigation of the underlying mechanism leading to inter- and intrasubject variations in the plasma concentration-time profiles of drugs (1) can considerably benefit rational drug therapy. The significant effect of gastric emptying on the rate and extent of celiprolol absorption and its role with respect to double-peak formation was demonstrated in the present study. In four dogs racemic celiprolol was dosed perorally in a crossover design during four different phases of the fasted-state gastric cycle and gastric motility was recorded simultaneously using a manometric measurement system. Intravenous doses were also given to obtain disposition and bioavailability parameters. The blood samples were assayed by a stereoselective HPLC method (2). The time to onset of the active phase of the gastric cycle showed an excellent correlation with the time to celiprolol peak concentration. Furthermore, bioavailability was increased when celiprolol was administered during the active phase. Double peaks were observed when the first active phase was relatively short, suggesting that a portion of the drug remained in the stomach until the next active phase. Population pharmacokinetic modeling of the data with a two-compartment open model with two lag times incorporating the motility data confirmed the effect of time to gastric empyting on the variability of the oral pharmacokinetics of celiprolol. The fasted-state motility phases determine the rate and extent of celiprolol absorption and influence the occurrence of double peaks. Peak plasma levels of celiprolol exhibit less variability if lag times, and therefore gastric emptying times, are taken into consideration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45049/1/10928_2006_Article_BF02354285.pd

    Histologic evaluation of three methods of periodontal root surface treatment in humans

    No full text
    BACKGROUND: Removing subgingival plaque and calculus is a major goal of periodontal treatment. Few attempts have been made to evaluate the use of lasers for root surface debridement in periodontal therapy. The aim of the present study was to compare, histologically, the effects of hand instrumentation, ultrasonic instrumentation, and CO2 lasers on the root surfaces of teeth treated in situ. METHODS: A total of 33 teeth scheduled for extraction due to severe periodontal disease were divided into three groups. In the first group, teeth were treated by ultrasonic bactericidal curettage (UBC) with an ultrasonic scaler; in the second group, teeth were treated by hand instrumentation; and in the third group, after hand instrumentation, roots were lased by a CO2 laser. The samples were then processed for histological examination. RESULTS: In the first and second groups, plaque and calculus were present in interradicular septa, lacunae, and surface concavities. In the third group, surfaces of specimens treated by a low-power defocused CO2 laser showed areas devoid of cementum, with completely sealed dentinal tubules, and no bacterial cell remnants. CONCLUSIONS: The CO2 laser treatment, used at low power and in the defocused mode, combined with traditional mechanical instrumentation, could improve root surface debridement of periodontally involved teeth. More extensive, long-term studies are needed to confirm this hypothesis
    corecore