189 research outputs found

    Calmodulin Binding to the 3614–3643 Region of RyR1 Is Not Essential for Excitation–Contraction Coupling in Skeletal Myotubes

    Get PDF
    Calmodulin is a ubiquitous Ca2+ binding protein that modulates the in vitro activity of the skeletal muscle ryanodine receptor (RyR1). Residues 3614–3643 of RyR1 comprise the CaM binding domain and mutations within this region result in a loss of both high-affinity Ca2+-bound calmodulin (CaCaM) and Ca2+-free CaM (apoCaM) binding (L3624D) or only CaCaM binding (W3620A). To investigate the functional role of CaM binding to this region of RyR1 in intact skeletal muscle, we compared the ability of RyR1, L3624D, and W3620A to restore excitation–contraction (EC) coupling after expression in RyR1-deficient (dyspedic) myotubes. W3620A-expressing cells responded normally to 10 mM caffeine and 500 ÎŒM 4-chloro-m-cresol (4-cmc). Interestingly, L3624D-expressing cells displayed a bimodal response to caffeine, with a large proportion of cells (∌44%) showing a greatly attenuated response to caffeine. However, high and low caffeine-responsive L3624D-expressing myotubes exhibited Ca2+ transients of similar magnitude after activation by 4-cmc (500 ÎŒM) and electrical stimulation. Expression of either L3624D or W3620A in dyspedic myotubes restored both L-type Ca2+ currents (retrograde coupling) and voltage-gated SR Ca2+ release (orthograde coupling) to a similar degree as that observed for wild-type RyR1, although L-current density was somewhat larger and activated at more hyperpolarized potentials in W3620A-expressing myotubes. The results indicate that CaM binding to the 3614–3643 region of RyR1 is not essential for voltage sensor activation of RyR1

    Identification of Apocalmodulin and Ca 2+ -Calmodulin Regulatory Domain in Skeletal Muscle Ca 2+ Release Channel, Ryanodine Receptor

    Get PDF
    Fusion proteins and full-length mutants were generated to identify the Ca(2+)-free (apoCaM) and Ca(2+)-bound (CaCaM) calmodulin binding sites of the skeletal muscle Ca(2+) release channel/ryanodine receptor (RyR1). [(35)S]Calmodulin (CaM) overlays of fusion proteins revealed one potential Ca(2+)-dependent (aa 3553-3662) and one Ca(2+)-independent (aa 4302-4430) CaM binding domain. W3620A or L3624D substitutions almost abolished completely, whereas V3619A or L3624A substitutions reduced [(35)S]CaM binding to fusion protein (aa 3553-3662). Three full-length RyR1 single-site mutants (V3619A,W3620A,L3624D) and one deletion mutant (Delta4274-4535) were generated and expressed in human embryonic kidney 293 cells. L3624D exhibited greatly reduced [(35)S]CaM binding affinity as indicated by a lack of noticeable binding of apoCaM and CaCaM (nanomolar) and the requirement of CaCaM (micromolar) for the inhibition of RyR1 activity. W3620A bound CaM (nanomolar) only in the absence of Ca(2+) and did not show inhibition of RyR1 activity by 3 microm CaCaM. V3619A and the deletion mutant bound apoCaM and CaCaM at levels compared with wild type. V3619A activity was inhibited by CaM with IC(50) approximately 200 nm, as compared with IC(50) approximately 50 nm for wild type and the deletion mutant. [(35)S]CaM binding experiments with sarcoplasmic reticulum vesicles suggested that apoCaM and CaCaM bind to the same region of the native RyR1 channel complex. These results indicate that the intact RyR1 has a single CaM binding domain that is shared by apoCaM and CaCaM

    Cardiac calcium signalling pathologies associated with defective calmodulin regulation of type 2 ryanodine receptor: Ca2+signalling consequences of defective CaM binding to RyR2

    Get PDF
    Cardiac ryanodine receptor (RyR2) is a homotetramer of 560 kDa polypeptides regulated by calmodulin (CaM), which decreases its open probability at diastolic and systolic Ca2+ concentrations. Point mutations in the CaM-binding domain of RyR2 (W3587A/L3591D/F3603A, RyR2ADA) in mice result in severe cardiac hypertrophy, poor left ventricle contraction and death by postnatal day 16, suggesting that CaM inhibition of RyR2 is required for normal cardiac function. Here, we report on Ca2+ signalling properties of enzymatically isolated, Fluo-4 dialysed whole cell clamped cardiac myocytes from 10–15-day-old wild-type (WT) and homozygous Ryr2ADA/ADA mice. Spontaneously occurring Ca2+ spark frequency, measured at −80 mV, was 14-fold lower in mutant compared to WT myocytes. ICa, though significantly smaller in mutant myocytes, triggered Ca2+ transients that were of comparable size to those of WT myocytes, but with slower activation and decay kinetics. Caffeine-triggered Ca2+ transients were about three times larger in mutant myocytes, generating three- to four-fold bigger Na+-Ca2+ exchanger NCX currents (INCX). Mutant myocytes often exhibited Ca2+ transients of variable size and duration that were accompanied by similarly alternating and slowly activating INCX. The data suggest that RyR2ADA mutation produces significant reduction in ICa density and ICa-triggered Ca2+ release gain, longer but infrequently occurring Ca2+ sparks, larger sarcoplasmic reticulum Ca2+ loads, and spontaneous Ca2+ releases accompanied by activation of large and potentially arrhythmogenic inward INCX

    Characterization of Recombinant Skeletal Muscle (Ser-2843) and Cardiac Muscle (Ser-2809) Ryanodine Receptor Phosphorylation Mutants

    Get PDF
    Phosphorylation of the skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptors has been reported to modulate channel activity. Abnormally high phosphorylation levels (hyperphosphorylation) at Ser-2843 in RyR1 and Ser-2809 in RyR2 and dissociation of FK506-binding proteins from the receptors have been implicated as one of the causes of altered calcium homeostasis observed during human heart failure. Using site-directed mutagenesis, we prepared recombinant RyR1 and RyR2 mutant receptors mimicking constitutively phosphorylated and dephosphorylated channels carrying a Ser/Asp (RyR1-S2843D and RyR2-S2809D) and Ser/Ala (RyR1-S2843A and RyR2-S2809A) substitution, respectively. Following transient expression in human embryonic kidney 293 cells, the effects of Ca2+, Mg2+, and ATP on channel function were determined using single channel and [3H]ryanodine binding measurements. In both assays, neither the skeletal nor cardiac mutants showed significant differences compared with wild type. Similarly essentially identical caffeine responses were observed in Ca2+ imaging measurements. Co-immunoprecipitation and Western blot analysis showed comparable binding of FK506-binding proteins to wild type and mutant receptors. Finally metabolic labeling experiments showed that the cardiac ryanodine receptor was phosphorylated at additional sites. Taken together, the results did not support the view that phosphorylation of a single site (RyR1-Ser-2843 and RyR2-Ser-2809) substantially changes RyR1 and RyR2 channel function

    Single Channel Properties of Heterotetrameric Mutant RyR1 Ion Channels Linked to Core Myopathies

    Get PDF
    Skeletal muscle excitation-contraction coupling involves activation of homotetrameric ryanodine receptor ion channels (RyR1s), resulting in the rapid release of Ca2+ from the sarcoplasmic reticulum. Previous work has shown that Ca2+ release is impaired by mutations in RyR1 linked to Central Core Disease and Multiple Minicore Disease. We studied the consequences of these mutations on RyR1 function, following their expression in human embryonic kidney 293 cells and incorporation in lipid bilayers. RyR1-G4898E, -G4898R, and -ΔV4926/I4927 mutants in the C-terminal pore region of RyR1 and N-terminal RyR1-R110W/L486V mutant all showed negligible Ca2+ permeation and loss of Ca2+-dependent channel activity but maintained reduced K+ conductances. Co-expression of wild type and mutant RyR1s resulted in Ca2+-dependent channel activities that exhibited intermediate Ca2+ selectivities compared with K+, which suggested the presence of tetrameric RyR1 complexes composed of wild type and mutant subunits. The number of wild-type subunits to maintain a functional heterotetrameric channel differed among the four RyR1 mutants. The results indicate that homozygous RyR1 mutations associated with core myopathies abolish or greatly reduce sarcoplasmic reticulum Ca2+ release during excitation-contraction coupling. They further suggest that in individuals, expressing wild type and mutant alleles, a substantial portion of RyR1 channels is able to release Ca2+ from sarcoplasmic reticulum

    Different Regions in Skeletal and Cardiac Muscle Ryanodine Receptors Are Involved in Transducing the Functional Effects of Calmodulin

    Get PDF
    Calmodulin (CaM) inhibits the skeletal muscle ryanodine receptor-1 (RyR1) and cardiac muscle RyR2 at micromolar Ca(2+) but activates RyR1 and inhibits RyR2 at submicromolar Ca(2+) by binding to a single, highly conserved CaM-binding site. To identify regions responsible for the differential regulation of RyR1 and RyR2 by CaM, we generated chimeras encompassing and flanking the CaM-binding domain. We found that the exchange of the N- and C-terminal flanking regions differentially affected RyR1 and RyR2. A RyR1/RyR2 chimera with an N-terminal flanking RyR2 substitution (RyR2 amino acid (aa) 3537-3579) was activated by CaM in single channel measurements at both submicromolar and micromolar Ca(2+). A RyR2/RyR1 chimera with a C-terminal flanking the 86-amino acid RyR1 substitution (RyR1 aa 3640-3725) bound (35)S-CaM but was not inhibited by CaM at submicromolar Ca(2+). In this region, five non-conserved amino acid residues (RyR1 aa 3680 and 3682-3685 and RyR2 aa 3647 and 3649-3652) differentially affect RyR helical probability. Substitution of the five amino acid residues in RyR1 with those of RyR2 showed responses to CaM comparable with wild type RyR1. In contrast, substitution of the five amino acid residues in RyR2 with those of RyR1 showed loss of CaM inhibition, whereas substitution of the five RyR2 sequence residues in the RyR2 chimera containing the RyR1 calmodulin-binding domain and C-flanking sequence restored wild type RyR2 inhibition by CaM at submicromolar Ca(2+). The results suggest that different regions are involved in CaM modulation of RyR1 and RyR2. They further suggest that five non-conserved amino acids in the C-terminal region flanking the CaM-binding domain have a key role in CaM inhibition of RyR2

    Clinical and functional effects of a deletion in a COOH-terminal lumenal loop of the skeletal muscle ryanodine receptor

    Get PDF
    We have identified a patient affected by a relatively severe form of central core disease (CCD), carrying a heterozygous deletion (amino acids 4863-4869) in the pore-forming region of the sarcoplasmic reticulum calcium release channel. The functional effect of this deletion was investigated (i) in lymphoblastoid cells from the affected patient and her mother, who was also found to harbour the mutation and (ii) in HEK293 cells expressing recombinant mutant channels. Lymphoblastoid cells carrying the RYR1 deletion exhibit an ‘unprompted' calcium release from intracellular stores, resulting in significantly smaller thapsigargin-sensitive intracellular Ca2+ stores, compared with lymphoblastoid cells from control individuals. Blocking the RYR1 with dantrolene restored the intracellular calcium stores to levels similar to those found in control cells. Single channel and [3H]ryanodine binding measurements of heterologously expressed mutant channels revealed a reduced ion conductance and loss of ryanodine binding and regulation by Ca2+. Heterologous expression of recombinant RYR1 peptides and analysis of their membrane topology demonstrate that the deleted amino acids are localized in the lumenal loop connecting membrane-spanning segments M8 and M10. We provide evidence that a deletion in the lumenal loop of RYR1alters channel function and causes CC

    Calmodulin Binding and Inhibition of Cardiac Muscle Calcium Release Channel (Ryanodine Receptor)

    Get PDF
    Metabolically (35)S-labeled calmodulin (CaM) was used to determine the CaM binding properties of the cardiac ryanodine receptor (RyR2) and to identify potential channel domains for CaM binding. In addition, regulation of RyR2 by CaM was assessed in [(3)H]ryanodine binding and single-channel measurements. Cardiac sarcoplasmic reticulum vesicles bound approximately four CaM molecules per RyR2 tetramer in the absence of Ca(2+); in the presence of 100 microm Ca(2+), the vesicles bound 7.5 CaM molecules per tetramer. Purified RyR2 bound approximately four [(35)S]CaM molecules per RyR tetramer, both in the presence and absence of Ca(2+). At least four CaM binding domains were identified in [(35)S]CaM overlays of fusion proteins spanning the full-length RyR2. The affinity (but not the stoichiometry) of CaM binding was altered by redox state as controlled by the presence of either GSH or GSSG. Inhibition of RyR2 activity by CaM was influenced by Ca(2+) concentration, redox state, and other channel modulators. Parallel experiments with the skeletal muscle isoform showed major differences in the CaM binding properties and regulation by CaM of the skeletal and cardiac ryanodine receptors

    Characterization of recessive RYR1 mutations in core myopathies

    Get PDF
    We have characterized at the molecular level, three families with core myopathies carrying apparent recessive mutations in their RYR1 gene and studied the pharmacological properties of myotubes carrying endogenous mutations as well as the properties of mutant channels expressed in HEK293 cells. The proband of family 1 carried p.Ala1577Thr+p.Gly2060Cys in trans, having inherited a mutation from each parent. Immunoblot analysis of proteins from the patient's skeletal muscle revealed low levels of ryanodine receptor (RyR1) but neither substitution alone or in combination affected the functional properties of RyR1 channels in a discernable way. Two affected siblings in family 2 carried p.Arg109Trp+p.Met485Val substitutions in cis, inherited from the unaffected father. Interestingly, both affected siblings only transcribed the mutated paternal allele in skeletal muscle, whereas the maternal allele was silent. Single-channel measurements showed that recombinant, mutant RyR1 channels carrying both substitutions lost the ability to conduct Ca2+. In this case as well, low levels of RyR1 were present in skeletal muscle extracts. The proband of family 3 carried p.Ser71Tyr+p.Asn2283His substitutions in trans. Recombinant channels with Asn2283His substitution showed an increased activity, whereas recombinant channels with p.Ser71Tyr+p.Asn2283His substitution lost activity upon isolation. Taken together, our data suggest major differences in the ways RYR1 mutations may affect patients with core myopathies, by compromising RyR1 protein expression, stability and/or activit
    • 

    corecore