15,615 research outputs found

    Triple Products and Yang-Baxter Equation (II): Orthogonal and Symplectic Ternary Systems

    Full text link
    We generalize the result of the preceeding paper and solve the Yang-Baxter equation in terms of triple systems called orthogonal and symplectic ternary systems. In this way, we found several other new solutions.Comment: 38 page

    Superconformal defects in the tricritical Ising model

    Full text link
    We study superconformal defect lines in the tricritical Ising model in 2 dimensions. By the folding trick, a superconformal defect is mapped to a superconformal boundary of the N=1 superconformal unitary minimal model of c=7/5 with D_6-E_6 modular invariant. It turns out that the complete set of the boundary states of c=7/5 D_6-E_6 model cannot be interpreted as the consistent set of superconformal defects in the tricritical Ising model since it does not contain the "no defect" boundary state. Instead, we find a set of 18 consistent superconformal defects including "no defect" and satisfying the Cardy condition. This set also includes some defects which are not purely transmissive or purely reflective.Comment: 25 pages, 3 figures. v2: typos corrected. v3: clarification about spin structure aligned theory added, references adde

    New Universality of Lyapunov Spectra in Hamiltonian Systems

    Full text link
    A new universality of Lyapunov spectra {\lambda_i} is shown for Hamiltonian systems. The universality appears in middle energy regime and is different from another universality which can be reproduced by random matrices in the following two points. One is that the new universality appears in a limited range of large i/N rather than the whole range, where N is degrees of freedom. The other is Lyapunov spectra do not behave linearly while random matrices give linear behavior even on 3D lattice. Quadratic terms with smaller nonlinear terms of potential functions play an intrinsic role in the new universality.Comment: 19 pages, 16 Encapsulated Postscript figures, LaTeX (100 kb

    Electron spin manipulation and resonator readout in a double quantum dot nano-electromechanical system

    Full text link
    Magnetically coupling a nano-mechanical resonator to a double quantum dot confining two electrons can enable the manipulation of a single electron spin and the readout of the resonator's natural frequency. When the Larmor frequency matches the resonator frequency, the electron spin in one of the dots can be selectively flipped by the magnetised resonator. By simultaneously measuring the charge state of the two-electron double quantum dots, this transition can be detected thus enabling the natural frequency of the mechanical resonator to be determined.Comment: 7 pages, fixed typos, updated figures 4 and

    How to realize Lie algebras by vector fields

    Full text link
    An algorithm for embedding finite dimensional Lie algebras into Lie algebras of vector fields (and Lie superalgebras into Lie superalgebras of vector fields) is offered in a way applicable over ground fields of any characteristic. The algorithm is illustrated by reproducing Cartan's interpretations of the Lie algebra of G(2) as the Lie algebra that preserves certain non-integrable distributions. Similar algorithm and interpretation are applicable to other exceptional simple Lie algebras, as well as to all non-exceptional simple ones and many non-simple ones, and to many Lie superalgebras.Comment: 17 pages, LaTe

    More on Gribov copies and propagators in Landau-gauge Yang-Mills theory

    Full text link
    Fixing a gauge in the non-perturbative domain of Yang-Mills theory is a non-trivial problem due to the presence of Gribov copies. In particular, there are different gauges in the non-perturbative regime which all correspond to the same definition of a gauge in the perturbative domain. Gauge-dependent correlation functions may differ in these gauges. Two such gauges are the minimal and absolute Landau gauge, both corresponding to the perturbative Landau gauge. These, and their numerical implementation, are described and presented in detail. Other choices will also be discussed. This investigation is performed, using numerical lattice gauge theory calculations, by comparing the propagators of gluons and ghosts for the minimal Landau gauge and the absolute Landau gauge in SU(2) Yang-Mills theory. It is found that the propagators are different in the far infrared and even at energy scales of the order of half a GeV. In particular, also the finite-volume effects are modified. This is observed in two and three dimensions. Some remarks on the four-dimensional case are provided as well.Comment: 23 pages, 16 figures, 6 tables; various changes throughout most of the paper; extended discussion on different possibilities to define the Landau gauge and connection to existing scenarios; in v3: Minor changes, error in eq. (3) & (4) corrected, version to appear in PR
    • …
    corecore