23,327 research outputs found
Incommensurate spin correlations induced by magnetic Fe ions substituted into overdoped Bi1.75Pb0.35Sr1.90CuO6+z
Spin correlations in the overdoped region of Bi1.75Pb0.35Sr1.90CuO6+z have
been explored with Fe-doped single crystals characterized by neutron
scattering, muon-spin-rotation (muSR) spectroscopy, and magnetic susceptibility
measurements. Static incommensurate spin correlations induced by the Fe spins
are revealed by elastic neutron scattering. The resultant incommensurability
delta is unexpectedly large (~0.2 r.l.u.), as compared with delta ~ 1/8 in
overdoped superconductor La2-xSrxCuO4. Intriguingly, the large delta in this
overdoped region is close to the hole concentration p. This result is
reminiscent of the delta ~ p trend observed in underdoped La2-xSrxCuO4;
however, it is inconsistent with the saturation of delta in the latter compound
in the overdoped regime. While our findings in Fe-doped
Bi1.75Pb0.35Sr1.90CuO6+z support the commonality of incommensurate spin
correlations in high-Tc cuprate superconductors, they also suggest that the
magnetic response might be dominated by a distinct mechanism in the overdoped
region.Comment: 4 pages, 5 figures. Revision in introduction, discussion, and
conclusion
Open Problems in Particle Condensation
particle condensation is a novel state in nuclear systems. We
briefly review the present status on the study of particle
condensation and address the open problems in this research field:
particle condensation in heavier systems other than the Hoyle state, linear
chain and particle rings, Hoyle-analogue states with extra neutrons,
particle condensation related to astrophysics, etc.Comment: 12 pages. To be published in J. of Phys. G special issue on Open
Problems in Nuclear Structure (OPeNST
Electromagnetic Corrections in Partially Quenched Chiral Perturbation Theory
We introduce photons in Partially Quenched Chiral Perturbation Theory and
calculate the resulting electromagnetic loop-corrections at NLO for the charged
meson masses and decay constants. We also present a numerical analysis to
indicate the size of the different corrections. We show that several
phenomenologically relevant quantities can be calculated consistently with
photons which couple only to the valence quarks, allowing the use of gluon
configurations produced without dynamical photons.Comment: 11 page
Spin fluctuations and superconductivity in noncentrosymmetric heavy fermion systems CeRhSi and CeIrSi
We study the normal and the superconducting properties in noncentrosymmetric
heavy fermion superconductors CeRhSi and CeIrSi. For the normal state,
we show that experimentally observed linear temperature dependence of the
resistivity is understood through the antiferromagnetic spin fluctuations near
the quantum critical point (QCP) in three dimensions. For the superconducting
state, we derive a general formula to calculate the upper critical field
, with which we can treat the Pauli and the orbital depairing effect on
an equal footing. The strong coupling effect for general electronic structures
is also taken into account. We show that the experimentally observed features
in , the huge value up to 30(T), the downward
curvatures, and the strong pressure dependence, are naturally understood as an
interplay of the Rashba spin-orbit interaction due to the lack of inversion
symmetry and the spin fluctuations near the QCP. The large anisotropy between
and is explained in terms of
the spin-orbit interaction. Furthermore, a possible realization of the
Fulde-Ferrell- Larkin-Ovchinnikov state for is studied. We
also examine effects of spin-flip scattering processes in the pairing
interaction and those of the applied magnetic field on the spin fluctuations.
We find that the above mentioned results are robust against these effects. The
consistency of our results strongly supports the scenario that the
superconductivity in CeRhSi and CeIrSi is mediated by the spin
fluctuations near the QCP.Comment: 21pages, 13figures, to be published in Phys. Rev.
Mott Phase in Polarized Two-component Atomic Fermi Lattice Gas:A Playground for S=1/2 Heisenberg Model in Magnetic Field
We investigate effects of pseudo-spin population imbalance on Mott phases in
1D trapped two-component atomic Fermi gases loaded on optical lattices based on
the repulsive Hubbard model in harmonic traps. By using the density matrix
renormalization group method, we numerically calculate density profiles of each
component and clarify the pseudo-spin magnetism. Consequently, we find that all
the features from weakly imbalance to fully polarized cases are well described
by S=1/2 antiferromagnetic Heisenberg chain under magnetic field. These results
indicate that the Mott phases offer experimental stages for studying various
interacting spin systems
All-or-none switching of transcriptional activity on single DNA molecules caused by a discrete conformational transition
Recently, it has been confirmed that long duplex DNA molecules with sizes
larger than several tens of kilo-base pairs (kbp), exhibit a discrete
conformational transition from an elongated coil state to a compact globule
state upon the addition of various kinds of chemical species that usually
induce DNA condensation. In this study, we performed a single-molecule
observation on a large DNA, Lambda ZAP II DNA (ca. 41 kbp), in a solution
containing RNA polymerase and substrates along with spermine, a tetravalent
cation, at different concentrations, by use of fluorescence staining of both
DNA and RNA. We found that transcription, or RNA production, is completely
inhibited in the compact state, but is actively performed in the unfolded coil
state. Such an all-or-none effect on transcriptional activity induced by the
discrete conformational transition of single DNA molecules is discussed in
relation to the mechanism of the regulation of large-scale genetic activity.Comment: 14 pages, 2 figure
Superconductivity in zigzag CuO chains
Superconductivity has recently been discovered in
PrBaCuO with a maximum of about 15K.
Since the CuO planes in this material are believed to be insulating, it has
been proposed that the superconductivity occurs in the double (or zigzag) CuO
chain layer. On phenomenological grounds, we propose a theoretical
interpretation of the experimental results in terms of a new phase for the
zigzag chain, labelled by CS. This phase has a gap for some of the
relative spin and charge modes but no total spin gap, and can have a divergent
superconducting susceptibility for repulsive interactions. A microscopic model
for the zigzag CuO chain is proposed, and on the basis of density matrix
renormalization group (DMRG) and bosonization studies of this model, we adduce
evidence that supports our proposal.Comment: 10 pages, 5 figures; Journal-ref. adde
- âŠ