158 research outputs found

    Effects of Plasma Radiation on the Thomson Scattering Diagnostic Installed on the Large Helical Device

    Get PDF
    Recently we modified the Thomson scattering diagnostic (TS) installed on LHD so that DC levels (VDC) of all avalanche photodiodes (APD) used for detecting scattered light can be registered every 1 ms, which enabling us to make validity check on TS data taken under very intense plasma radiation. In the line of this task, we first examined how the pulse-performance of an APD degrades as the intensity of continuous light (JDC) incident to the APD increases. We found two effects are involved in deteriorating the pulse-performance of the APD: (1) the responsivity of the APD to a pulsed light drops as JDC increases, causing a systematic errors on the deduced electron temperature (Te) and density (ne); (2) the frequency response of the APD and the following circuit drops as JDC increases, which deforms the pulse shape. The bias voltage applied to the APD (Vb) has large influence on these behaviors, showing the best overall performance for a high JDC around Vb ? 0.5Vr, where Vr is the recommended voltage giving responsivity of 675 kV/W at 1060 nm. Considering these effects together, we set a conservative validity criterion for the pulse APD performance in term of the VDC: VDC < 0.5 V. The Vb = 0.5 Vr setup gives much reliable Te-profiles without a collapse in Te-profile for a much wider range of plasma radiation intensity. With this criterion, we check the validity of Te- and ne-profiles of two example data

    Raman and Rayleigh Calibrations of the LHD YAG Thomson Scattering

    Get PDF
    We have carried out absolute calibrations of the LHD YAG Thomson scattering system by using Raman scattering and Rayleigh scattering in order to verify the applicability of Rayleigh calibration in the LHD Thomson scattering, and make a comparative study of Raman and Rayleigh calibrations. In the LHD Thomson scattering device, Rayleigh calibration is expected to give more reliable calibration factors. For the Rayleigh calibration, additional Rayleigh channel was installed into 20 polychromators. The other 124 polychromators without Rayleigh channel were calibrated by only Raman scattering. In the Raman calibration, pure gaseous nitrogen was introduced into the LHD vacuum vessel whereas the Rayleigh calibration was made by using air as target gas. The calibration factors obtained from the Raman and Rayleigh calibrations show good agreements. Uncertainties in the calibration factors obtained from the Raman and Rayleigh calibrations are discussed

    On-Demand Density Correction Using Steady-State Plasmas in the LHD Thomson Scattering

    Get PDF
    In order to measure reliable electron densities of fusion plasmas by using Thomson scattering system, both accurate absolute calibration and long-term stability in the system are required. Even if slight misalignment of some optics occurs, it may cause large errors in measured densities. We propose a new method to obtain correctionfactors to the errors originated from misalignment by using steady-state plasma discharges. In addition to the datacorrection, realignment of the laser beam can be applied als

    Developments of frequency comb microwave reflectometer for the interchange mode observations in LHD plasma

    Get PDF
    We have upgraded the multi-channel microwave reflectometer system which uses a frequency comb as a source and measure the distribution of the density fluctuation caused by magneto-hydro dynamics instability. The previous multi-channel system was composed of the Ka-band, and the U-band system has been developed. Currently, the U-band system has eight frequency channels, which are 43.0, 45.0, 47.0, 49.0, 51.0, 53.0, 55.0, and 57.0 GHz, in U-band. Before the installation to the Large Helical Device (LHD), several tests for understanding the system characteristics, which are the phase responsibility, the linearity of output signal, and others, have been carried out. The in situ calibration in LHD has been done for the cross reference. In the neutral beam injected plasma experiments, we can observe the density fluctuation of the interchange mode and obtain the radial distribution of fluctuation amplitude

    Nd:YAG laser Thomson scattering diagnostics for a laboratory magnetosphere

    Get PDF
    A new Nd:YAG laser Thomson scattering (TS) system has been developed to explore the mechanism of high-beta plasma formation in the RT-1 device. The TS system is designed to measure electron temperatures (Te) from 10 eV to 50 keV and electron densities (ne) of more than 1.0 × 1017 m−3. To measure at the low-density limit, the receiving optics views the long scattering length (60 mm) using a bright optical system with both a large collection window (260-mm diameter) and large collection lenses (300-mm diameter, a solid angle of ∼68 × 10−3 str). The scattered light of the 1.2-J Nd:YAG laser (repetition frequency: 10 Hz) is detected with a scattering angle of 90° and is transferred via a set of lenses and an optical fiber bundle to a polychromator. After Raman scattering measurement for the optical alignment and an absolute calibration, we successfully measured Te = 72.2 eV and ne = 0.43 × 1016 m−3 for the coil-supported case and Te = 79.2 eV and ne = 1.28 × 1016 m−3 for the coil-levitated case near the inner edge in the magnetospheric plasmas

    Dependence of the resonant magnetic perturbation penetration threshold on plasma parameters and ions in helical plasmas

    Get PDF
    We investigate the penetration threshold of resonant magnetic perturbation (RMP) by the external coils in the Large Helical Device (LHD) for various plasma aspect ratio configurations. The qualitative dependence on the collisionality is opposite to that in a high plasma aspect configuration; this is a quite unique property first found in the LHD. We also investigate the threshold dependence on the ion species, and find that the threshold in deuterium discharges is much smaller than that in hydrogen discharges. In all cases the thresholds are higher as the poloidal rotation becomes faster, which shows that poloidal rotation is the dominant driver to the RMP shielding. This is qualitatively consistent with the torque balance model between the electromagnetic and poloidal viscous torques. In a configuration of the LHD, the dependence of the threshold on the density is qualitatively similar to that in Ohmic tokamak plasmas, but the beta dependence is opposite to that of tokamaks. The difference arises from the cause of the viscous torque

    Calibrations of the LHD Thomson scattering system

    Get PDF
    The Thomson scattering diagnostic systems are widely used for the measurements of absolute local electron temperatures and densities of fusion plasmas. In order to obtain accurate and reliable temperature and density data, careful calibrations of the system are required. We have tried several calibration methods since the second LHD experiment campaign in 1998. We summarize the current status of the calibration methods for the electron temperature and density measurements by the LHD Thomson scattering diagnostic system. Future plans are briefly discussed

    Characteristics of MHD instabilities limiting the beta value in LHD

    Get PDF
    Effects of low-n magnetohydrodynamic instabilities on plasma performance have been assessed in the regime where an achieved beta value is limited by instabilities. The unstable regime of an ideal interchange mode is characterized by enhanced magnetic hill and reduced magnetic shear. Experiments have clarified that (i) low-n modes are significantly destabilized in the ideal-unstable configurations and lead to degradation of central beta by at most 60%, and (ii) the degree of their damages strongly depends on the mode rotation velocity. The occurrence of the minor collapse is independent of an existence of an error field

    Distorted magnetic island formation during slowing down to mode locking in helical plasmas

    Get PDF
    We report the first observation of the formation of a magnetic island before the occurrence of mode locking in helical plasma. New analysis and observation techniques applied to the ECE signal and poloidal flow in LHD experiments yield the following results. (i) A magnetic island structure is present, rotating at the end of the rotating phase. (ii) The rotation speed of the island is not uniform in space and time. The rotation of the island changes significantly at the end of the rotating phase, and the deformation increases until the mode is locked
    • …
    corecore