208 research outputs found

    Ligand-triggered resistance to molecular targeted drugs in lung cancer: Roles of hepatocyte growth factor and epidermal growth factor receptor ligands

    Get PDF
    がん進展制御研究所Recent advances in molecular biology have led to the identification of new molecular targets, such as epidermal growth factor receptor (EGFR) mutations and echinoderm microtubule-associated protein-like 4 (EML4) - anaplastic lymphoma kinase (ALK) fusion gene, in lung cancer. Dramatic response has been achieved with EGFR inhibitors (gefitinib and erlotinib) and an ALK inhibitor (crizotinib) in lung cancer expressing corresponding targets. However, cancer cells acquire resistance to these drugs and cause recurrence. Known major mechanisms for resistance to molecular targeted drugs include gatekeeper mutations in the target gene and activation of bypass survival signal via receptors other than the target receptors. The latter mechanism can involve receptor gene amplification and ligand-triggered receptor activation as well. For example, hepatocyte growth factor (HGF), the ligand of a tyrosine kinase receptor Met, activates Met and the downstream PI3K/Akt pathway and triggers resistance to EGFR inhibitors in EGFR mutant lung cancer cells. Moreover, EGFR ligands activate EGFR and downstream pathways and trigger resistance to crizotinib in EML4-ALK lung cancer cells. These observations indicate that signals from oncogenic drivers (EGFR signaling in EGFR -mutant lung cancer and ALK signaling in EML4-ALK lung cancer) and ligand-triggered bypass signals (HGF-Met and EGFR ligands-EGFR, respectively) must be simultaneously blocked to avoid the resistance. This review focuses specifically on receptor activation by ligand stimulation and discusses novel therapeutic strategies that are under development for overcoming resistance to molecular targeted drugs in lung cancer. © 2012 Japanese Cancer Association

    エンドウプロトプラスト細胞における植物プロモータの発現

    Get PDF
    High yields of viable pea protoplasts were produced from suspension cultured cells derived from calli formed from embryogenic tissues or leaves and the conditions for the optimum expression of chloramphenicol acetyltransferase (CAT) fused to the phenylalanine ammonia-lyase gene of Pisum sativum (pPAL1-15) were investigated by transient assay after electroporation. A fungal elicitor isolated from a pea pathogen, Mycosphaerella pinodes, and the reduced from of glutathione induced the expression of PAL promoter but orthovanadate, a plasma membrane ATPase inhibitor, considerably suppressed the gene expression. Rice protoplasts were also prepared from the suspension cultured cells derived from embryonic tissues, and the effects of elicitors on the expression of CAT in pPAL1-15-electroporated rice protoplasts were examined. No distinctive induction of CAT activity was observed by the treatment of rice protoplasts with a chitosan oligomer elicitor

    TGF-β-dependent reprogramming of amino acid metabolism induces epithelial–mesenchymal transition in non-small cell lung cancers

    Get PDF
    Epithelial–mesenchymal transition (EMT)—a fundamental process in embryogenesis and wound healing—promotes tumor metastasis and resistance to chemotherapy. While studies have identified signaling components and transcriptional factors responsible in the TGF-β-dependent EMT, whether and how intracellular metabolism is integrated with EMT remains to be fully elucidated. Here, we showed that TGF-β induces reprogramming of intracellular amino acid metabolism, which is necessary to promote EMT in non-small cell lung cancer cells. Combined metabolome and transcriptome analysis identified prolyl 4-hydroxylase α3 (P4HA3), an enzyme implicated in cancer metabolism, to be upregulated during TGF-β stimulation. Further, knockdown of P4HA3 diminished TGF-β-dependent changes in amino acids, EMT, and tumor metastasis. Conversely, manipulation of extracellular amino acids induced EMT-like responses without TGF-β stimulation. These results suggest a previously unappreciated requirement for the reprogramming of amino acid metabolism via P4HA3 for TGF-β-dependent EMT and implicate a P4HA3 inhibitor as a potential therapeutic agent for cancer

    Podoplanin promotes progression of MPM

    Get PDF
    Malignant pleural mesothelioma (MPM) is characterized by dissemination and aggressive growth in the thoracic cavity. Podoplanin (PDPN) is an established diagnostic marker for MPM, but the function of PDPN in MPM is not fully understood. The purpose of this study was to determine the pathogenetic function of PDPN in MPM. Forty-seven of 52 tumors (90%) from Japanese patients with MPM and 3/6 (50%) MPM cell lines tested positive for PDPN. Knocking down PDPN in PDPN-high expressing MPM cells resulted in decreased cell motility. In contrast, overexpression of PDPN in PDPN-low expressing MPM cells enhanced cell motility. PDPN stimulated motility was mediated by activation of the RhoA/ROCK pathway. Moreover, knocking down PDPN with short hairpin (sh) RNA in PDPN-high expressing MPM cells resulted in decreased development of a thoracic tumor in mice with severe combined immune deficiency (SCID). In sharp contrast, transfection of PDPN in PDPN-low expressing MPM cells resulted in an increase in the number of Ki-67-positive proliferating tumor cells and it promoted progression of a thoracic tumor in SCID mice. Interestingly, PDPN promoted focus formation in vitro, and a low level of E-cadherin expression and YAP1 activation was observed in PDPN-high MPM tumors. These findings indicate that PDPN is a diagnostic marker as well as a pathogenetic regulator that promotes MPM progression by increasing cell motility and inducing focus formation. Therefore, PDPN might be a pathogenetic determinant of MPM dissemination and aggressive growth and may thus be an ideal therapeutic target

    Hepatocyte growth factor reduces susceptibility to an irreversible epidermal growth factor receptor inhibitor in EGFR-T790M mutant lung cancer

    Get PDF
    金沢大学附属病院がん高度先進治療センターPurpose: The secondary T790M mutation in epidermal growth factor receptor (EGFR) is the most frequent cause of acquired resistance to the reversible EGFR tyrosine kinase inhibitors (EGFR-TKI), gefitinib and erlotinib, in lung cancer. Irreversible EGFR-TKIs are expected to overcome the reversible EGFR-TKI resistance of lung cancer harboring T790M mutation in EGFR. However, it is clear that resistance may also develop to this class of inhibitors. We showed previously that hepatocyte growth factor (HGF) induced gefitinib resistance of lung cancer harboring EGFR-activating mutations. Here, we investigated whether HGF induced resistance to the irreversible EGFR-TKI, CL-387,785, in lung cancer cells (H1975) harboring both L858R activating mutation and T790M secondary mutation in EGFR. Experimental Design: CL-387,785 sensitivity and signal transduction in H1975 cells were examined in the presence or absence of HGF or HGF-producing fibroblasts with or without HGF-MET inhibitors. Results: HGF reduced susceptibility to CL-387,785 in H1975 cells. Western blotting and small interfering RNA analyses indicated that HGF-induced hyposensitivity was mediated by the MET/phosphoinositide 3-kinase/Akt signaling pathway independent of EGFR, ErbB2, ErbB3, and ErbB4. Hyposensitivity of H1975 cells to CL-387,785 was also induced by coculture with high-level HGF-producing lung fibroblasts. The hyposensitivity was abrogated by treatment with anti-HGF neutralizing antibody, HGF antagonist NK4, or MET-TKI. Conclusions: We showed HGF-mediated hyposensitivity as a novel mechanism of resistance to irreversible EGFR-TKIs. It will be clinically valuable to investigate the involvement of HGF-MET-mediated signaling in de novo and acquired resistance to irreversible EGFR-TKIs in lung cancer harboring T790M mutation in EGFR. ©2010 AACR

    Receptor ligand-triggered resistance to alectinib and its circumvention by Hsp90 inhibition in EML4-ALK lung cancer cells

    Get PDF
    Alectinib is a new generation ALK inhibitor with activity against the gatekeeper L1196M mutation that showed remarkable activity in a phase I/II study with echinoderm microtubule associated protein-like 4 (EML4) - anaplastic lymphoma kinase (ALK) non-small cell lung cancer (NSCLC) patients. However, alectinib resistance may eventually develop. Here, we found that EGFR ligands and HGF, a ligand of the MET receptor, activate EGFR and MET, respectively, as alternative pathways, and thereby induce resistance to alectinib. Additionally, the heat shock protein 90 (Hsp90) inhibitor suppressed protein expression of ALK, MET, EGFR, and AKT, and thereby induced apoptosis in EML4-ALK NSCLC cells, even in the presence of EGFR ligands or HGF. These results suggest that Hsp90 inhibitors may overcome ligand-triggered resistance to new generation ALK inhibitors and may result in more successful treatment of NSCLC patients with EML4-ALK

    Analysis of DOC and Ram for NSCLC

    Get PDF
    Background: Current clinical trials demonstrated that combination regimens comprising chemotherapy and immunotherapy lead to better patient outcomes compared to chemotherapy alone as the first line of treatment for non-small cell lung cancer (NSCLC). In addition, the combination therapy of docetaxel (Doc) and ramucirumab (Ram) was considered one of the standard treatments for advanced or relapsed NSCLC patients. However, little is known about the therapeutic responders of this combination therapy among previously treated NSCLC patients. In the present study, we aimed to identify predictive factors for therapeutic response, including programmed death-ligand 1 (PD-L1) expression in tumors, for Doc treatment in combination with Ram. Methods: We retrospectively analyzed a total of 135 advanced or relapsed NSCLC patients who were refractory to platinum-based chemotherapy at eleven institutions in Japan between July 2016 and November 2018. Results: Our observations showed that PD-L1 expression in tumors is not associated with the efficacy of combined therapy of Doc and Ram in previously treated NSCLC patients. Analysis of the patient clinical profiles indicated that prior treatment with immune checkpoint inhibitors (ICIs) is a reliable predictor for the good progression-free survival (PFS) to this combination therapy (P=0.041). Conclusions: Our retrospective study indicated that combination regimens comprising chemotherapy and ICIs followed by Doc and Ram could be an optimal therapeutic option for NSCLC patients regardless of the PD-L1 status of tumors. Further investigations are required to strengthen clinical evidence demonstrating the effectiveness of the combination therapy of Doc plus Ram in previously treated NSCLC patients

    Combined chemotherapy with carboplatin plus irinotecan showed favorable efficacy in a patient with relapsed small cell carcinoma of the prostate complicated with meningeal carcinomatosis

    Get PDF
    金沢大学附属病院がん高度先進治療センター金沢大学がん研究所分子標的がん医療研究開発センターWe report the case of a 65-year-old man with recurrent prostate cancer who presented with meningeal carcinomatosis. In September 2007, he had been diagnosed with mixed type small cell carcinoma and adenocarcinoma at clinical stage T4N1M1 (primary prostate tumor with multiple bone, liver, and lymph node metastases) and hormonal therapy had been administered. Following an increase in the level of pro-gastrin-releasing peptide (ProGRP), combined chemotherapy with cisplatin plus etoposide was implemented and showed efficacy in targeting the small cell carcinoma. In March 2008, he presented with signs of meningeal irritation; his condition deteriorated quickly and multiple brain metastases were confirmed by magnetic resonance imaging (MRI). A sample of cerebrospinal fluid collected by lumbar puncture showed cancer cells and an elevated level of ProGRP. Small cell carcinoma of the prostate complicated with meningeal carcinomatosis was diagnosed. A different chemotherapy regimen was then administered, consisting of a combination of carboplatin plus irinotecan, which is one of the most common first-line treatments for extensive-stage small cell lung carcinoma. From day 20 after the initiation of this therapy, he gradually recovered from the signs of meningeal irritation, and brain MRI showed nearly normal findings; also, the serum level of ProGRP was reduced. In conclusion, we report the efficacy of combined treatment with carboplatin plus irinotecan for small cell carcinoma of the prostate complicated with meningeal carcinomatosis. Because this clinical condition is extremely rare, a gold standard treatment has yet to be established. © 2009 Japan Society of Clinical Oncology

    Lysophosphatidic acid stimulates the proliferation and motility of malignant pleural mesothelioma cells through lysophosphatidic acid receptors, LPA1 and LPA2

    Get PDF
    金沢大学がん研究所分子標的がん医療研究開発センターLysophosphatidic acid (LPA) is one of the simplest natural phospholipids. This phospholipid is recognized as an extracellular potent lipid mediator with diverse effects on various cells. Although LPA is shown to stimulate proliferation and motility via LPA receptors, LPA1 and LPA2, in several cancer cell lines, the role of LPA and LPA receptors for malignant pleural mesothelioma (MPM) has been unknown. MPM is an aggressive malignancy with a poor prognosis and the incidence is increasing and is expected to increase further for another 10-20 years worldwide. Therefore, the development of novel effective therapies is needed urgently. In this study, we investigated the effect of LPA on the proliferation and motility of MPM cells. We found that all 12 cell lines and four clinical samples of MPM expressed LPA1, and some of them expressed LPA2, LPA3, LPA4 and LPA5. LPA stimulated the proliferation and motility of MPM cells in a dose-dependent manner. Moreover, LPA-induced proliferation was inhibited by Ki16425, an inhibitor of LPA1, and small interfering RNA against LPA1, but not LPA2. Interestingly, LPA-induced motility was inhibited by small interfering RNA against LPA2, but not LPA1, unlike a number of previous reports. These results indicate that LPA is a critical factor on proliferation though LPA1, and on motility though LPA2 in MPM cells. Therefore, LPA and LPA receptors, LPA2 as well as LPA1, represent potential therapeutic targets for patients with MPM. © 2008 Japanese Cancer Association
    corecore