409 research outputs found

    Carrier Relaxation Dynamics in the Organic Superconductor kappa-(BEDT-TTF)(2)Cu(NCS)(2) Under Pressure

    Get PDF
    Photo-induced carrier relaxation dynamics have been investigated for the organic superconductor kappa-(BEDT-TTF)(2)Cu(NCS)(2) with different probe polarization under 1.3 kbar at low temperatures. We successfully observed the isotropic and anisotropic responses for the probe polarization, which were found to appear at 56 K. By comparing the responses with and without applying pressure, we found that those were slightly changed, indicating that the application of pressure has effect on the carrier relaxation dynamics

    Familial Parkinson disease mutations influence α-Synuclein assembly

    Get PDF
    Lewy bodies composed of aggregates of α-Synuclein (αS) in the brain are the main histopathological features of Lewy body diseases (LBD) such as Parkinson\u27s disease and dementia with Lewy bodies. Mutations such as E46K, A30P and A53T in the αS gene cause autosomal dominant LBD in a number of kindreds. Although these mutations accelerate fibril formation, their precise effects at early stages of the αS aggregation process remain unknown. To answer this question, we examined the aggregation including monomer conformational dynamics and oligomerization of the E46K, A30P, A53T and A30P/A53T mutations and wild type (WT) using thioflavin S assay, circular dichroism spectroscopy, photo-induced cross-linking of unmodified proteins, electron microscopy, and atomic force microscopy. Relative to WT αS, E46K αS accelerated the kinetics of the secondary structure change and oligomerization, whereas A30P αS decelerated them. These effects were reflected in changes in average oligomer size. The mutant oligomers of E46K αS functioned as fibril seeds significantly more efficiently than those of WT αS, whereas the mutant oligomers of A30P αS were less efficient. Our results that mutations of familial LBD had opposite effects at early stages of αS assembly may provide new insight into the molecular mechanisms of LBD. © 2011 Elsevier Inc

    Trace Elements in Hair: Relevance to Air Pollution

    Get PDF
    Elemental concentrations of single hair samples taken from 2003 to 2012 had been evaluated by X-ray fluorescence for the assessment of the relation between calcium and cancer. Early results implied a mechanism linking hair and serum element concentrations with a shift in element levels over time. After 2009, pollution-attributable differences were seen in the levels of Ca, Sr, P, Cl, Br, K, S, elements under renal control by parathyroid hormone (PTH), as well as Cu, Zn, Ti. Especially, hair taken from February to March 2011 showed low [Cu] and [Zn] indicating about half of the normal serum level and often three orders of magnitude higher [Ti] than typical. These specimens also showed higher serum [S] than usual, and except for one patient with PTH-related disease, all the subjects had the normal or lower hair calcium than typical for earlier years. Almost all the subjects showed store-operated Ca channel gating. The pollution era is associated with an increase in hair Na, a decrease in K, and abnormally low P, suggesting a functional deterioration of Na+/K+-ATPase. These results can be attributed to increases in serum Ca and S coincident with breathing the polluted air; the incorporated Ca closes the ion channels of hair matrix cells but may be moved with P to bone, resulting in the abnormal P deficiency, likely producing an ATP shortage in serum. This insufficient ATP supply may result in inactivated molecular pumps and hypokalemia contributing to fatal ventricular fibrillation in patients with myocardial infarction. The pollution increase [S] in serum may be excreted by forming sulfide compounds with Cu and Zn, resulting in Cu deficiency necessary for making elastin to repair damage in blood vessels. The K and Cu deficiencies observed appear to account for the reported increase in infarction mortality after high-pollution days

    Inhibition of RAGE signaling through the intracellular delivery of inhibitor peptides by PEI cationization

    Get PDF
    The receptor for advanced glycation end products (RAGE) is a multi-ligand cell surface receptor and a member of the immunoglobulin superfamily. RAGE is involved in a wide range of inflammatory, degenerative and hyper-proliferative disorders which span over different organs by engaging diverse ligands, including advanced glycation end products, S100 family proteins, high-mobility group protein B1 (HMGB1) and amyloid beta. We previously demonstrated that the cytoplasmic domain of RAGE is phosphorylated upon the binding of ligands, enabling the recruitment of two distinct pairs of adaptor proteins, Toll-interleukin 1 receptor domain-containing adaptor protein (TIRAP) and myeloid differentiation protein 88 (MyD88). This engagement allows the activation of downstream effector molecules, and thereby mediates a wide variety of cellular processes, such as inflammatory responses, apoptotic cell death, migration and cell growth. Therefore, inhibition of the binding of TIRAP to RAGE may abrogate intracellular signaling from ligand-activated RAGE. In the present study, we developed inhibitor peptides for RAGE signaling (RAGE-I) by mimicking the phosphorylatable cytosolic domain of RAGE. RAGE-I was efficiently delivered into the cells by polyethylenimine (PEI) cationization. We demonstrated that RAGE-I specifically bound to TIRAP and abrogated the activation of Cdc42 induced by ligand-activated RAGE. Furthermore, we were able to reduce neuronal cell death induced by an excess amount of S100B and to inhibit the migration and invasion of glioma cells in vitro. Our results indicate that RAGE-I provides a powerful tool for therapeutics to block RAGE-mediated multiple signaling
    corecore