11 research outputs found

    Connective Tissue Growth Factor in Regulation of RhoA Mediated Cytoskeletal Tension Associated Osteogenesis of Mouse Adipose-Derived Stromal Cells

    Get PDF
    Background: Cytoskeletal tension is an intracellular mechanism through which cells convert a mechanical signal into a biochemical response, including production of cytokines and activation of various signaling pathways. Methods/Principal Findings: Adipose-derived stromal cells (ASCs) were allowed to spread into large cells by seeding them at a low-density (1,250 cells/cm 2), which was observed to induce osteogenesis. Conversely, ASCs seeded at a high-density (25,000 cells/cm 2) featured small cells that promoted adipogenesis. RhoA and actin filaments were altered by changes in cell size. Blocking actin polymerization by Cytochalasin D influenced cytoskeletal tension and differentiation of ASCs. To understand the potential regulatory mechanisms leading to actin cytoskeletal tension, cDNA microarray was performed on large and small ASCs. Connective tissue growth factor (CTGF) was identified as a major regulator of osteogenesis associated with RhoA mediated cytoskeletal tension. Subsequently, knock-down of CTGF by siRNA in ASCs inhibited this osteogenesis. Conclusions/Significance: We conclude that CTGF is important in the regulation of cytoskeletal tension mediated AS

    Isoform specific expression and function of neuregulin

    No full text
    Neuregulin (also known as NDF, heregulin, ARIA, GGF or SMDF), induces cell growth and differentiation. Biological effects of neuregulin are mediated by members of the erbB family of tyrosine kinase receptors. Three major neuregulin isoforms are produced from the gene, which differ substantially in sequence and in overall structure. Here we use in situ hybridization with isoform-specific probes to illustrate the spatially distinct patterns of expression of the isoforms during mouse development. Ablation of the neuregulin gene in the mouse has demonstrated multiple and independent functions of this factor in development of both the nervous system and the heart. We show here that targeted mutations that affect different isoforms result in distinct phenotypes, demonstrating that isoforms can take over specific functions in vivo. Type I neuregulin is required for generation of neural crest-derived neurons in cranial ganglia and for trabeculation of the heart ventricle, whereas type III neuregulin plays an important role in the early development of Schwann cells. The complexity of neuregulin functions in development is therefore due to independent roles played by distinct isoforms

    Severe neuropathies in mice with targeted mutations in the ErbB3 receptor

    No full text
    Neuregulins and their specific receptors, members of the ErbB family of tyrosine kinases, have been implicated in the control of growth and development of Schwann cells, specialized cells that wrap around nerve axons to provide electrical insulation. Here we use gene targeting to generate mice that lack ErbB3, a high-affinity neuregulin receptor. Homozygous erbB3 mutant embryos lack Schwann-cell precursors and Schwann cells that accompany peripheral axons of sensory and motor neurons. The initial development of motor neurons and sensory neurons of dorsal root ganglia occurs as it should, but at later stages most motor neurons (79%) and sensory neurons in dorsal root ganglia (82%) undergo cell death in erbB3 mutant embryos. Degeneration of the peripheral nervous system in erbB3 mutant pups is thus much more severe than the cell death in mice that lack neurotrophins or neurotrophin receptors. We also show that ErbB3 functions in a cell-autonomous way during the development of Schwann cells, but not in the survival of sensory or motor neurons. Our results indicate that sensory and motor neurons require factors for their survival that are provided by developing Schwann cells

    Osteogenic differentiation of mesenchymal stem cells promoted by overexpression of connective tissue growth factor*

    No full text
    Objective: Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focusing on combining gene transfection with tissue engineering techniques. The aim of this study is to investigate the effect of connective tissue growth factor (CTGF) on the proliferation and osteogenic differentiation of the bone marrow mesenchymal stem cells (MSCs). Methods: A CTGF-expressing plasmid (pCTGF) was constructed and transfected into MSCs. Then expressions of bone morphogenesis-related genes, proliferation rate, alkaline phosphatase activity, and mineralization were examined to evaluate the osteogenic potential of the CTGF gene-modified MSCs. Results: Overexpression of CTGF was confirmed in pCTGF-MSCs. pCTGF transfection significantly enhanced the proliferation rates of pCTGF-MSCs (P<0.05). CTGF induced a 7.5-fold increase in cell migration over control (P<0.05). pCTGF transfection enhanced the expression of bone matrix proteins, such as bone sialoprotein, osteocalcin, and collagen type I in MSCs. The levels of alkaline phosphatase (ALP) activities of pCTGF-MSCs at the 1st and 2nd weeks were 4.0- and 3.0-fold higher than those of MSCs cultured in OS-medium, significantly higher than those of mock-MSCs and normal control MSCs (P<0.05). Overexpression of CTGF in MSCs enhanced the capability to form mineralized nodules. Conclusion: Overexpression of CTGF could improve the osteogenic differentiation ability of MSCs, and the CTGF gene-modified MSCs are potential as novel cell resources of bone tissue engineering
    corecore