145 research outputs found

    Associations Between General and Central Obesity and Hypertension Among Children: The Childhood Obesity Study in China Mega-Cities

    Get PDF
    In this study, we examined the associations of general and central obesity and hypertension among Chinese children. Data was collected from 1626 children aged 7-16 years and their parents in four mega-cities across China. Mixed effect models examined associations of general and central obesity with hypertension, and between body mass index (BMI), waist circumference (WC), waist-To-height ratio (WHtR), systolic blood pressure (SBP) and diastolic blood pressure (DBP). The prevalence of general obesity, central obesity, and hypertension among the children was 11.1%, 19.7%, and 9.0%, respectively. More boys had general and central obesity than girls (15.2% vs. 6.9%; 27.4% vs. 11.7%, respectively; both P \u3c 0.0001). Sex difference in hypertension rate was not statistically significant (9.3% in boys vs. 8.8% in girls, P = 0.7341). Both SBP and DBP were positively associated with BMI, WC, and WHtR, regardless of sex and region. General obesity (OR = 5.94, 95% confidence interval [CI]: 3.69-9.55) and central obesity (OR = 3.45, 95% CI: 2.27-5.23) were strongly associated with hypertension. The prevalence of general obesity, central obesity, and hypertension was high among Chinese children in the four mega-cities across China. Children\u27s BMI, WC, and WHtR were positively associated with their SBP and DBP. Obese children were 3-6 times more likely to have hypertension

    Reactive power planning for regional power grids based on active and reactive power adjustments of DGs

    Get PDF
    To deal with extreme overvoltage scenarios with small probabilities in regional power grids, the traditional reactive power planning model requires a huge VAR compensator investment. Obviously, such a decision that makes a large investment to cope with a small probability event is not economic. Therefore, based on the scenario analysis of power outputs of distributed generations and load consumption, a novel reactive power planning model considering the active and reactive power adjustments of distributed generations is proposed to derive the optimal allocation of VAR compensators and ensure bus voltages within an acceptable range under extreme overvoltage scenarios. The objective of the proposed reactive power planning model is to minimize the VAR compensator investment cost and active power adjustment cost of distributed generations. Moreover, since the proposed reactive power planning model is formulated as a mixed-integer nonlinear programming problem, a primal-dual interior point method-based particle swarm optimization algorithm is developed to effectively solve the proposed model. Simulation results were conducted with the modified IEEE 30-bus system to verify the effectiveness of the proposed reactive power planning model

    Cellular Phenotype Plasticity in Cancer Dormancy and Metastasis

    Get PDF
    Cancer dormancy is a period of cancer progression in which residual tumor cells exist, but clinically remain asymptomatic for a long time, as well as resistant to conventional chemo- and radiotherapies. Cellular phenotype plasticity represents that cellular phenotype could convert between epithelial cells and cells with mesenchymal traits. Recently, this process has been shown to closely associate with tumor cell proliferation, cancer dormancy and metastasis. In this review, we have described different scenarios of how the transition from epithelial to mesenchymal morphology (EMT) and backwards (MET) are connected with the initiation of dormancy and reactivation of proliferation. These processes are fundamental for cancer cells to invade tissues and metastasize. Recognizing the mechanisms underlying the cellular phenotype plasticity as well as dormancy and targeting them is likely to increase the efficiency of traditional tumor treatment inhibiting tumor metastasis

    Gait recognition based on the golden ratio

    Full text link

    Utility of S100A12 as an Early Biomarker in Patients With ST-Segment Elevation Myocardial Infarction

    Get PDF
    Importance: S100A12 is a calcium binding protein which is involved in inflammation and progression of atherosclerosis. Objective: We sought to investigate the utility of S100A12 as a biomarker for the early diagnosis and prognostication of patients presenting with ST-segment elevation myocardial infarction (STEMI). Design, Setting, and Participants: S100A12 was measured in 1023 patients presenting to the emergency department with acute chest pain between June 2012 and November 2015. An independent cohort of 398 patients enrolled at 3 different hospitals served as a validation cohort. Main Outcomes and Measures: The primary clinical endpoint of interest was major adverse cardiac and cerebral events (MACCE) defined as a composite of all-cause death, MI, stroke, or hospitalization for heart failure. Results: A total of 438/1023 patients (42.8%) in the diagnosis cohort were adjudicated as STEMI, among whom plasma S100A12 levels increased within 30 min and peaked 1–2 h after symptom onset. Compared with high-sensitivity cardiac troponin T and creatine kinase-MB isoenzyme, S100A12 more accurately identified STEMI, especially within the first 2 h after symptom onset (area under the curve 0.963 compared with 0.860 for hscTnT and 0.711 for CK-MB, both P \u3c 0.05). These results were consistent in the 243-patient validation cohort. The 1-year rate of MACCE was greatest in patients in the highest peak S100A12 tertile, intermediate in the middle tertile and least in the lowest tertile (9.3 vs. 5.7 vs. 3.0% respectively, Ptrend = 0.0006). By multivariable analysis the peak plasma concentration of S100A12 was an independent predictor of MACCE within 1 year after STEMI (HR, 1.001, 95%CI, 1.000–1.002; P = 0.0104). Zhang et al. S100A12 as a STEMI Biomarker Conclusions and Relevance: S100A12 rapidly identified patients with STEMI, more accurately than other cardiac biomarkers, especially within the first 2 h after symptom onset. The peak plasma S100A12 level was a strong predictor of 1-year prognosis after STEMI

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • …
    corecore