29 research outputs found

    Efficient Secure Multiparty Subset Computation

    No full text
    Secure subset problem is important in secure multiparty computation, which is a vital field in cryptography. Most of the existing protocols for this problem can only keep the elements of one set private, while leaking the elements of the other set. In other words, they cannot solve the secure subset problem perfectly. While a few studies have addressed actual secure subsets, these protocols were mainly based on the oblivious polynomial evaluations with inefficient computation. In this study, we first design an efficient secure subset protocol for sets whose elements are drawn from a known set based on a new encoding method and homomorphic encryption scheme. If the elements of the sets are taken from a large domain, the existing protocol is inefficient. Using the Bloom filter and homomorphic encryption scheme, we further present an efficient protocol with linear computational complexity in the cardinality of the large set, and this is considered to be practical for inputs consisting of a large number of data. However, the second protocol that we design may yield a false positive. This probability can be rapidly decreased by reexecuting the protocol with different hash functions. Furthermore, we present the experimental performance analyses of these protocols

    A Practical GPS Location Spoofing Attack in Road Navigation Scenario

    No full text
    ABSTRACT High value of GPS location information and easy availability of portable GPS signal spoofing devices incentivize attackers to launch GPS spoofing attacks against location-based applications. In this paper, we propose an attack model in road navigation scenario, and develop a complete framework to analyze, simulate and evaluate the spoofing attacks under practical constraints. To launch an attack, the framework first constructs a road network, and then searches for an attack route that smoothly diverts a victim without his awareness. In extensive data-driven simulations in College Point, New York City, we managed to navigate a victim to locations 1km away from his original destination

    Influenza vaccine induces intracellular immune memory of human NK cells.

    No full text
    Influenza vaccines elicit antigen-specific antibodies and immune memory to protect humans from infection with drift variants. However, what supports or limits vaccine efficacy and duration is unclear. Here, we vaccinated healthy volunteers with annual vaccine formulations and investigated the dynamics of T cell, natural killer (NK) cell and antibody responses upon restimulation with heterologous or homologous influenza virus strains. Influenza vaccines induced potential memory NK cells with increased antigen-specific recall IFN-Îł responses during the first 6 months. In the absence of significant changes in other NK cell markers (CD45RO, NKp44, CXCR6, CD57, NKG2C, CCR7, CD62L and CD27), influenza vaccines induced memory NK cells with the distinct feature of intracellular NKp46 expression. Indeed, surface NKp46 was internalized, and the dynamic increase in NKp46(intracellular)+CD56dim NK cells positively correlated with increased IFN-Îł production to influenza virus restimulation after vaccination. In addition, anti-NKp46 antibodies blocked IFN-Îł responses. These findings provide insights into a novel mechanism underlying vaccine-induced immunity and NK-related diseases, which may help to design persisting and universal vaccines in the future

    Identification of the CNGC Gene Family in Rice and Mining of Alleles for Application in Rice Improvement

    No full text
    Cyclic nucleotide-gated ion channel (CNGC) gene regulation plays important roles in plant immune and abiotic stress response. Here, we identified 16 CNGC genes in rice (Oryza sativa). Then, we analyzed their chromosomal location, physicochemical properties, subcellular localization, gene functional interaction network, cis-acting elements, phylogenetic relationships, collinearity, expression in tissues under normal conditions and abiotic stresses, and geng-cds-haplotype (gcHap) diversity in 3010 gcHaps. As a result, OsCNGC3 (Os06g0527300) was identified as a gene different from previous report, and OsCNGC genes were found to play important roles in rice population differentiation and rice improvement. Our results revealed their very strong differentiation between subspecies and populations, important roles in response to abiotic stresses, as well as strong genetic bottleneck effects and artificial selection of gcHap diversity in the modern breeding process of Xian (indica) and Geng (japonica) populations. The results also suggested that natural variations in most rice CNGC loci are potentially valuable for improving rice productivity and tolerance to abiotic stresses. The favorable alleles at the CNGC loci should be explored to facilitate their application in future rice improvement

    Inhibiting the cGAS‐STING pathway in myeloid cells effectively improves myocardial healing related to TET2 deficiency‐induced DNA damage response

    No full text
    Abstract Background Myeloid cells play critical roles in the regulation of myocardial injury and repair. Clonal hematopoiesis (CH)‐related mutations in genes, such as Ten‐eleven Translocation 2 (TET2), can impair myeloid cells and are associated with increased risk of cardiovascular disease (CVD). How Tet2 loss‐of‐function (LOF) impacts myeloid cells and disrupts normal myocardial repair remains unclear. Methods We established ischemia‐induced myocardial infarction (MI) in a myeloid‐specific Tet2‐deficient mouse model. The echocardiographic assessment was conducted to evaluate the cardiac function. Histological analysis was performed to evaluate morphological changes in infarcted areas and fibrosis. To monitor the dynamic changes of myeloid cells in cardiac tissues during cardiac remodeling after MI, we performed longitudinal analysis on subsets of myeloid cells using flow cytometry. We performed immunofluorescence (IF) staining to examine the DNA damage and genome instability caused by Tet2 LOF. Gene expression was assessed by real‐time qRT‐PCR. Stimulator of Interferon Genes (STING) pathway activation was assessed using various methods, including Western blotting, flow cytometry, ELISA and IF staining of key signaling proteins involved in this pathway. Additionally, H‐151 was used as a pharmacological tool to antagonize augmented STING activation in the murine MI model. Results We observed a substantial increase of neutrophils in the post‐MI mice, which contributes to adverse outcomes during heart repair. Mechanistically, Tet2‐deficient myeloid cells exhibited increased genome instability, accompanied with augmented activation of the STING pathway. Furthermore, the use of H‐151 a covalent STING binder that targets the cysteine residue at position 91 and functions as a potent STING antagonist, led to a substantial decrease in neutrophil populations in Tet2‐deficient mice following myocardial infarction, thereby reversing adverse cardiac outcomes. Conclusion Our novel findings establish the rationale for targeting the cGAS‐STING pathway as a promising therapeutic strategy to mitigate cardiovascular disease risk in individuals with clonal hematopoiesis harboring TET2 loss‐of‐function mutations. Highlights Myeloid‐specific Tet2 depletion promotes neutrophil expansion upon myocardium infarction (MI); Tet2‐deficient myeloid cells exhibit increased genome instability and cGAS‐STING overactivation; STING antagonist H‐151 treatment reduces neutrophil expansion in Tet2‐deficient mice after MI and mitigates deleterious cardiac outcomes

    Detection of EGFR mutations of serum circulating DNA.

    No full text

    High-Power Acoustic-Optical Q-Switched 1.83 ”m Tm-Doped Bulk Laser

    No full text
    We report on a high-power acoustic-optical (AO) Q-switched Tm:YLF laser operating at ~1.83 ÎŒm by controlling the transmittance of the output coupler. Under the continuous-wave (CW) operation, the maximum output power of 13 W is achieved, and the slope efficiency is up to 32.7%. With a YAG etalon inserted into the cavity, the linewidth is compressed below 0.5 nm with a maximum output power of 12.2 W. In the Q-switched state, the maximum pulsed output power of 10.32 W is achieved with a pulse duration of 150 ns when the repetition rate is 15 kHz. And the maximum pulsed energy of 1.13 mJ is generated with a duration of 131 ns at 5 kHz. As far as we know, this is the highest output power reported for the CW and pulsed 1.83 ÎŒm laser. In addition, the relationship between the output wavelength and crystal length is theoretically analyzed, which shows that increasing the loss of 1880 nm is the key to high-power 1.83 ÎŒm laser output
    corecore