12 research outputs found

    Pathophysiological Considerations in Periorbital Necrotizing Fasciitis: A Case Report.

    Get PDF
    BACKGROUND Periorbital necrotizing fasciitis (PNF) is a rare complication of bacterial infection, associated with irreversible inflammatory destruction of soft tissues like subcutaneous tissue and superficial fascia. PNF can cause visual loss, septic shock and death within hours to days. Since the infection progresses rapidly from a local disease to septic shock, prompt identification and decisive interventions are mandatory. AIM Considering pathophysiology, differential diagnosis, and treatment options, we report a case of PNF and its outcome.Methods: A 69 years old male with febrile periorbital swelling had been diagnosed with bilateral PNF, caused by dual infection with Streptococcus pyogenes (S. pyogenes) and Staphylococcus aureus (S. aureus) based on conjunctival swabs. RESULTS The superantigens produced by S. pyogenes have been identified as key to the rapid dissemination of infection and severity of systemic manifestations. CONCLUSIONS A combination of intravenous antibiotics and regular surgical debridements resulted in a beneficial outcome in our patient

    Does the 6-minute walk test in hospitalized COPD patients exclusively correlate with lung function parameters or should psychological factors also be taken into account?

    Get PDF
    Abstract The 6-minute walk test is generally considered a standard test for the evaluation of short-term maximal physical performance. It has not been evaluated whether psychological factors, such as anxiety or depression, affect the performance or the results of the test. The main aim of this study was to investigate whether a correlation exists between psychological factors and the data from the 6-minute walking test. The study cohort consisted of 85 (♀ = 34 and ♂ = 51) 66 ± 10 (mean ± SD) year-old patients with chronic obstructive pulmonary disease (COPD) hospitalized for disease exacerbation. Forced Expiratory Volume in the first second (FEV1) (% predicted) as predictor for lung function, as well as anxiety and depression symptoms assessed using the Hospital Anxiety and Depression Scale (HADS) as psychological predictors were collected. Bivariate correlations and hierarchical linear regression models were used to analyse the correlations. Walking distance was on average 260m ± 107m and ranged from 64m to 480m. HADS was negatively correlated with 6-min walking distance (r = 0.441, p = .0009, r = -.523, p = 00006). Hierarchical linear regression showed that FEV1 alone explained 33%, and together with the psychological variables anxiety and depression explained 42% of the variance of results from the 6-minute walking test. These findings demonstrated that 11% of the data correlated with the psychological variables alone (p = .011). The effect size for lung function (f2 = .717) and psychological variables (f2 = .352) were high, whereas the socio-demographic variables sex, age, educational level and BMI could not explain any additional variance in our cohort. In conclusion, our study indicates that psychological factors such as symptoms of depression and anxiety are associated with lower physical functional performance in the 6-minute walking test. As such, these factors should also be assessed. Future research is needed to show if treatments of anxiety and depression can improve the walking distance in COPD patients

    Characteristics of inflammatory response and repair after experimental blast lung injury in rats.

    Get PDF
    BACKGROUND AND OBJECTIVES Blast-induced lung injury is associated with inflammatory, which are characterised by disruption of the alveolar-capillary barrier, haemorrhage, pulmonary infiltrateration causing oedema formation, pro-inflammatory cytokine and chemokine release, and anti-inflammatory counter-regulation. The objective of the current study was to define sequence of such alterations in with establishing blast-induced lung injury in rats using an advanced blast generator. METHODS Rats underwent a standardized blast wave trauma and were euthanised at defined time points. Non-traumatised animals served as sham controls. Obtained samples from bronchoalveolar lavage fluid (BALF) at each time-point were assessed for histology, leukocyte infiltration and cytokine/chemokine profile. RESULTS After blast lung injury, significant haemorrhage and neutrophil infiltration were observed. Similarly, protein accumulation, lactate dehydrogenase activity (LDH), alveolar eicosanoid release, matrix metalloproteinase (MMP)-2 and -9, pro-Inflammatory cytokines, including tumour necrosis factor (TNF) and interleukin (IL) -6 raised up. While declining in the level of anti-inflammatory cytokine IL-10 occurred. Ultimately, pulmonary oedema developed that increased to its maximum level within the first 1.5 h, then recovered within 24 h. CONCLUSION Using a stablished model, can facilitate the study of inflammatory response to blast lung injury. Following the blast injury, alteration in cytokine/chemokine profile and activity of cells in the alveolar space occurs, which eventuates in alveolar epithelial barrier dysfunction and oedema formation. Most of these parameters exhibit time-dependent return to their basal status that is an indication to resilience of lungs to blast-induced lung injury

    Ex Vivo Pulmonary Oedema after In Vivo Blast-Induced Rat Lung Injury: Time Dependency, Blast Intensity and Beta-2 Adrenergic Receptor Role

    Full text link
    Objective: Current treatments for blast-induced lung injury are limited to supportive procedures including mechanical ventilation. The study aimed to investigate the role of post-trauma-induced oedema generation in the function of time and trauma intensity and the probable role of beta 2-adrenergic receptors (β2_{2}-ARs) agonists on pulmonary oedema. The study is conducted using an ex vivo model after an experimental in vivo blast-induced thorax trauma in rats. Methods: Rats were randomised and divided into two groups, blast and sham. The blast group were anaesthetised and exposed to the blast wave (3.16 ± 0.43 bar) at a distance of 3.5 cm from the thorax level. The rats were sacrificed 10 min after the blast, the lungs explanted and treated with terbutaline, formoterol, propranolol or amiloride to assess the involvement of sodium transport. Other groups of rats were exposed to distances of 5 and 7 cm from the thorax to reduce the intensity of the injury. Further, one group of rats was studied after 180 min and one after 360 min after a 3.5 cm blast injury. Sham controls were exposed to identical procedures except for receiving blast overpressure. Results: Lung injury and oedema generation depended on time after injury and injury intensity. Perfusion with amiloride resulted in a further increase in oedema formation as indicated by weight gain (p < 0.001), diminished tidal volume (Tv) (p < 0.001), and increased airway resistance (p < 0.001). Formoterol caused a significant increase in the Tv (p < 0.001) and a significant decrease in the airway resistance (p < 0.01), while the lung weight was not influenced. Trauma-related oedema was significantly reduced by terbutaline in terms of lung weight gain (p < 0.01), Tv (p < 0.001), and airway resistance (p < 0.01) compared to control blast-injured lungs. Terbutaline-induced effects were completely blocked by the β-receptor antagonist propranolol (p < 0.05). Similarly, amiloride, which was added to terbutaline perfusion, reversed terbutaline-induced weight gain reduction (p < 0.05). Conclusions: β2_{2}-adrenoceptor stimulation had a beneficial impact by amiloride-dependent sodium and therefore, fluid transport mechanisms on the short-term ex vivo oedema generation in a trauma-induced in vivo lung injury of rats

    Ex Vivo Pulmonary Oedema after In Vivo Blast-Induced Rat Lung Injury: Time Dependency, Blast Intensity and Beta-2 Adrenergic Receptor Role.

    Get PDF
    Objective: Current treatments for blast-induced lung injury are limited to supportive procedures including mechanical ventilation. The study aimed to investigate the role of post-trauma-induced oedema generation in the function of time and trauma intensity and the probable role of beta 2-adrenergic receptors (β2-ARs) agonists on pulmonary oedema. The study is conducted using an ex vivo model after an experimental in vivo blast-induced thorax trauma in rats. Methods: Rats were randomised and divided into two groups, blast and sham. The blast group were anaesthetised and exposed to the blast wave (3.16 ± 0.43 bar) at a distance of 3.5 cm from the thorax level. The rats were sacrificed 10 min after the blast, the lungs explanted and treated with terbutaline, formoterol, propranolol or amiloride to assess the involvement of sodium transport. Other groups of rats were exposed to distances of 5 and 7 cm from the thorax to reduce the intensity of the injury. Further, one group of rats was studied after 180 min and one after 360 min after a 3.5 cm blast injury. Sham controls were exposed to identical procedures except for receiving blast overpressure. Results: Lung injury and oedema generation depended on time after injury and injury intensity. Perfusion with amiloride resulted in a further increase in oedema formation as indicated by weight gain (p < 0.001), diminished tidal volume (Tv) (p < 0.001), and increased airway resistance (p < 0.001). Formoterol caused a significant increase in the Tv (p < 0.001) and a significant decrease in the airway resistance (p < 0.01), while the lung weight was not influenced. Trauma-related oedema was significantly reduced by terbutaline in terms of lung weight gain (p < 0.01), Tv (p < 0.001), and airway resistance (p < 0.01) compared to control blast-injured lungs. Terbutaline-induced effects were completely blocked by the β-receptor antagonist propranolol (p < 0.05). Similarly, amiloride, which was added to terbutaline perfusion, reversed terbutaline-induced weight gain reduction (p < 0.05). Conclusions: β2-adrenoceptor stimulation had a beneficial impact by amiloride-dependent sodium and therefore, fluid transport mechanisms on the short-term ex vivo oedema generation in a trauma-induced in vivo lung injury of rats

    Impact of Bacterial Toxins in the Lungs

    Full text link
    Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+^{+} transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression

    Smoking Cessation Counselling: What Makes Her or Him a Good Counsellor? Can Counselling Technique Be Deduced to Other Important Lifestyle Counselling Competencies?

    Get PDF
    Smoking is a major health concern in both developed and developing countries. Smoking cessation counselling is of major importance for health care providers such as physicians, psychologists, nurses and many further therapeutic workers. We recently have demonstrated feasibility of a 4-hour “student-to-student course” (1 hour of scientific background and 3 hours of role plays and intervision) that provided knowledge, skills and attitude to smoking cessation counselling. A key question remains whether such knowledge, skills and attitude can be further deduced to key public health or lifestyle counselling areas like body weight management in overweight persons, management of addictions like alcohol and substance or situation (e.g., Internet and shopping) abuse, management of physical activity/exercise or lifestyle modification like workaholic lifestyle. The authors try to develop such a base for enabling patients to adapt healthier behaviour and give objectives for such counselling situations including the elaboration of clear therapeutic aims for counsellors

    Cytokine–Ion Channel Interactions in Pulmonary Inflammation

    No full text
    The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research

    Characteristics of inflammatory response and repair after experimental blast lung injury in rats

    Get PDF
    BACKGROUND AND OBJECTIVES Blast-induced lung injury is associated with inflammatory, which are characterised by disruption of the alveolar-capillary barrier, haemorrhage, pulmonary infiltrateration causing oedema formation, pro-inflammatory cytokine and chemokine release, and anti-inflammatory counter-regulation. The objective of the current study was to define sequence of such alterations in with establishing blast-induced lung injury in rats using an advanced blast generator. METHODS Rats underwent a standardized blast wave trauma and were euthanised at defined time points. Non-traumatised animals served as sham controls. Obtained samples from bronchoalveolar lavage fluid (BALF) at each time-point were assessed for histology, leukocyte infiltration and cytokine/chemokine profile. RESULTS After blast lung injury, significant haemorrhage and neutrophil infiltration were observed. Similarly, protein accumulation, lactate dehydrogenase activity (LDH), alveolar eicosanoid release, matrix metalloproteinase (MMP)-2 and -9, pro-Inflammatory cytokines, including tumour necrosis factor (TNF) and interleukin (IL) -6 raised up. While declining in the level of anti-inflammatory cytokine IL-10 occurred. Ultimately, pulmonary oedema developed that increased to its maximum level within the first 1.5 h, then recovered within 24 h. CONCLUSION Using a stablished model, can facilitate the study of inflammatory response to blast lung injury. Following the blast injury, alteration in cytokine/chemokine profile and activity of cells in the alveolar space occurs, which eventuates in alveolar epithelial barrier dysfunction and oedema formation. Most of these parameters exhibit time-dependent return to their basal status that is an indication to resilience of lungs to blast-induced lung injury

    A murine model to study vasoreactivity and intravascular flow in lung isograft microvessels

    Get PDF
    Intravital microscopy of orthotopic lung tissue is technically demanding, especially for repeated investigations. Therefore, we have established a novel approach, which allows non-invasive repetitive in vivo microscopy of ectopic lung tissue in dorsal skinfold chambers. Syngeneic subpleural peripheral lung tissue and autologous endometrium (control) were transplanted onto the striated muscle within dorsal skinfold chambers of C57BL/6 mice. Grafts were analysed by intravital fluorescence microscopy over 14 days. Angiogenesis occurred in the grafts on day 3, as indicated by sinusoidal microvessels on the grafts' edges with very slow blood flow, perifocal oedema, and haemorrhage. By day 10, lung transplants were completely revascularized, exhibited a dense network of microvessels with irregular diameters, chaotic angioarchitecture, and high blood flow. Compared to lung tissue, endometrial grafts contained a structured, glomerulus-like vessel architecture with lower blood flow. Despite missing ventilation, hypoxic vasoconstriction of the lung tissue arterioles occurred. In contrast, endometrium tissue arterioles dilated during hypoxia and constricted in hyperoxia. This demonstrates that ectopic lung grafts keep their ability for organ-specific hypoxic vasoconstriction. These findings indicate that our approach is suitable for repetitive in vivo pulmonary microcirculation analyses. The high blood flow and hypoxia-induced vasoconstriction in lung grafts suggest a physiological intrinsic vasoregulation independent of the recipient tissue
    corecore