6 research outputs found
Biofabrication of in situ self assembled 3D cell cultures in a weightlessness environment generated using magnetic levitation
Magnetic levitation though negative magnetophoresis is a novel technology to simulate weightlessness and has recently found applications in material and biological sciences. Yet little is known about the ability of the magnetic levitation system to facilitate biofabrication of in situ three dimensional (3D) cellular structures. Here, we optimized a magnetic levitation though negative magnetophoresis protocol appropriate for long term levitated cell culture and developed an in situ 3D cellular assembly model with controlled cluster size and cellular pattern under simulated weightlessness. The developed strategy outlines a potential basis for the study of weightlessness on 3D living structures and with the opportunity for real-time imaging that is not possible with current ground-based simulated weightlessness techniques. The low-cost technique presented here may offer a wide range of biomedical applications in several research fields, including mechanobiology, drug discovery and developmental biology.Scientific and Technological Research Council of Turkey (215S862
Biofabrication of cellular structures using weightlessness as a biotechnological tool
Gravity is an important biomechanical signal effecting the morphology and function of organisms. Reduction of gravitational forces, as experienced during spaceflight, cause alterations in the biological systems. Magnetic levitation technique is one of the most recent ground-based technology to mimic weightlessness environment. In addition to providing a platform to investigate biological effects of the weightlessness, this platform presents a novel opportunity to biofabricate 3-dimensional (3D) structures in a scaffold-and nozzle-free fashion. In this study, various controllable self-assembled 3D living structures were fabricated via magnetic levitation technique. This strategy may offer an easy and cost-effective opportunity for a wide range of space biotechnology researches.TUBITAK (215S86