264 research outputs found

    Spin Polarization Phenomena and Pseudospin Quantum Hall Ferromagnetism in the HgTe Quantum Well

    Full text link
    The parallel field of a full spin polarization of the electron gas in a \Gamma8 conduction band of the HgTe quantum well was obtained from the magnetoresistance by three different ways in a zero and quasi-classical range of perpendicular field component Bper. In the quantum Hall range of Bper the spin polarization manifests in anticrossings of magnetic levels, which were found to strongly nonmonotonously depend on Bper.Comment: to be published in AIP Conf. Proc.: 15-th International Conference on Narrow Gap Systems (NGS-15

    Magnetotransport in Double Quantum Well with Inverted Energy Spectrum: HgTe/CdHgTe

    Full text link
    We present the first experimental study of the double-quantum-well (DQW) system made of 2D layers with inverted energy band spectrum: HgTe. The magnetotransport reveals a considerably larger overlap of the conduction and valence subbands than in known HgTe single quantum wells (QW), which may be regulated by an applied gate voltage VgV_g. This large overlap manifests itself in a much higher critical field BcB_c separating the range above it where the quantum peculiarities shift linearly with VgV_g and the range below with a complicated behavior. In the latter case the NN-shaped and double-NN-shaped structures in the Hall magnetoresistance ρxy(B)\rho_{xy}(B) are observed with their scale in field pronouncedly enlarged as compared to the pictures observed in an analogous single QW. The coexisting electrons and holes were found in the whole investigated range of positive and negative VgV_g as revealed from fits to the low-field NN-shaped ρxy(B)\rho_{xy}(B) and from the Fourier analysis of oscillations in ρxx(B)\rho_{xx}(B). A peculiar feature here is that the found electron density nn remains almost constant in the whole range of investigated VgV_g while the hole density pp drops down from the value a factor of 6 larger than nn at extreme negative VgV_g to almost zero at extreme positive VgV_g passing through the charge neutrality point. We show that this difference between nn and pp stems from an order of magnitude larger density of states for holes in the lateral valence band maxima than for electrons in the conduction band minimum. We interpret the observed reentrant sign-alternating ρxy(B)\rho_{xy}(B) between electronic and hole conductivities and its zero resistivity state in the quantum Hall range of fields on the basis of a calculated picture of magnetic levels in a DQW.Comment: 15 pages, 13 figure

    Effect of exchange electron-electron interaction on conductivity of InGaAs single and double quantum wells in ballistic regime

    Full text link
    We report an experimental study of quantum conductivity corrections for two-dimensional electron gas in a GaAs/InGaAs/GaAs single and double quantum wells in a wide temperature range (1.8-100) K. We perform a comparison of our experimental data for the longitudinal conductivity at zero magnetic field to the theory of interaction-induced corrections to th transport coefficients. In the temperature range from 10 K up to (45-60) K, wich covers the ballistic interaction regimes for our samples, a rather good agreement between the theory and our experimental results has been found

    Temperature dependence of quantum lifetime in n-InGaAs/GaAs structures with strongly coupled double quantum wells

    Full text link
    Longitudinal ρxx(B) and Hall ρxy(B) magnetoresistances are experimentally investigated as a function of in-plane and transverse magnetic fields in n-InGaAs/GaAs nanostructures with strongly-coupled double quantum wells in the temperature range T = 1.8-70 K and magnetic fields B = 0-9.0 T. Experimental data on the temperature dependence of quantum lifetime in diffusive (kBT/τtr ≪ 1) and ballistic (kBT/τtr ≫ 1) regimes are reported. It has been found that in the ballistic regime in the temperature range where kBT/EF < 0.1, the observed quadratic temperature dependence of quantum lifetime is determined by inelastic electron-electron scattering. However, the temperature dependence of quantum lifetime cannot be quantitatively described by the existing theories in the whole temperature range. © 2013 American Institute of Physics

    Effects of spin polarization in the HgTe quantum well

    Full text link
    Magnetoresistivity features connected with the spin level coincidences under tilted fields in a Γ 8 conduction band of the HgTe quantum well were found to align along straight trajectories in a (B ⊥,B) plane between the field components perpendicular and parallel to the layer, meaning a linear spin polarization dependence on a magnetic field. Among the trajectories is a noticeable set of lines descending from a single point on the Baxis, which is shown to yield a field of the full spin polarization of the electronic system, in agreement with the data on the electron redistribution between spin subbands obtained from Fourier transforms of oscillations along circle trajectories in the (B ⊥,B) plane and with the point on the magnetoresistivity under pure Bseparating a complicated weak field dependence from the monotonous one. The whole picture of coincidences is well described by the isotropic g factor, although its value is twice as small as that obtained from oscillations under pure perpendicular fields. The discrepancy is attributed to different manifestations of spin polarization phenomena in the coincidences and within the exchange-enhanced spin gaps. In the quantum Hall range of B ⊥, the spin polarization manifests in anticrossings of magnetic levels, which were found to depend dramatically nonmonotonously on B ⊥. © 2012 American Physical Society

    High-resolution remote thermography using luminescent low-dimensional tin-halide perovskites

    Full text link
    While metal-halide perovskites have recently revolutionized research in optoelectronics through a unique combination of performance and synthetic simplicity, their low-dimensional counterparts can further expand the field with hitherto unknown and practically useful optical functionalities. In this context, we present the strong temperature dependence of the photoluminescence (PL) lifetime of low-dimensional, perovskite-like tin-halides, and apply this property to thermal imaging with a high precision of 0.05 {\deg}C. The PL lifetimes are governed by the heat-assisted de-trapping of self-trapped excitons, and their values can be varied over several orders of magnitude by adjusting the temperature (up to 20 ns {\deg}C-1). Typically, this sensitive range spans up to one hundred centigrade, and it is both compound-specific and shown to be compositionally and structurally tunable from -100 to 110 {\deg} C going from [C(NH2)3]2SnBr4 to Cs4SnBr6 and (C4N2H14I)4SnI6. Finally, through the innovative implementation of cost-effective hardware for fluorescence lifetime imaging (FLI), based on time-of-flight (ToF) technology, these novel thermoluminophores have been used to record thermographic videos with high spatial and thermal resolution.Comment: 25 pages, 4 figure

    Spatial structure of an individual Mn acceptor in GaAs

    Get PDF
    The wave function of a hole bound to an individual Mn acceptor in GaAs is spatially mapped by scanning tunneling microscopy at room temperature and an anisotropic, cross-like shape is observed. The spatial structure is compared with that from an envelope-function, effective mass model, and from a tight-binding model. This demonstrates that anisotropy arising from the cubic symmetry of the GaAs crystal produces the cross-like shape for the hole wave-function. Thus the coupling between Mn dopants in GaMnAs mediated by such holes will be highly anisotropic.Comment: 3 figures, submitted to PR
    corecore