1,130 research outputs found

    Two -loop O(GFMH2)O(G_F{M_H}^2) radiative corrections to the Higgs decay width H→γγH \to \gamma \gamma for large Higgs boson masses

    Full text link
    This note is devoted to the calculation of the two-loop O(GFMH2)O(G_F {M_H}^2) radiative corrections to the Higgs decay width H→γγH \to \gamma \gamma for large values of the Higgs boson mass MHM_H within the Minimal Standard Model. The use of the Equivalence Theorem makes it possible to reduce the problem to the consideration of the physical Higgs boson field and the Goldstone bosons w+,w−,zw^{+},w^{-},z. We present analytical results for the various two- and three-particle absorptive parts of two-loop contributions, using dispersive techniques, analytic results for all but one of the dispersive contributions. The typical size of the correction is ∼ 30\sim ~30 percent for a Higgs boson mass of order 1 TeV1~TeV.Comment: 21 pages, 7 uuencoded figure

    Superfluid phases of triplet pairing and neutrino emission from neutron stars

    Full text link
    Neutrino energy losses through neutral weak currents in the triplet-spin superfluid neutron liquid are studied for the case of condensate involving several magnetic quantum numbers. Low-energy excitations of the multicomponent condensate in the timelike domain of the energy and momentum are analyzed. Along with the well-known excitations in the form of broken Cooper pairs, the theoretical analysis predicts the existence of collective waves of spin density at very low energy. Because of a rather small excitation energy of spin waves, their decay leads to a substantial neutrino emission at the lowest temperatures, when all other mechanisms of neutrino energy loss are killed by a superfluidity. Neutrino energy losses caused by the pair recombination and spin-wave decays are examined in all of the multicomponent phases that might represent the ground state of the condensate, according to modern theories, and for the case when a phase transition occurs in the condensate at some temperature. Our estimate predicts a sharp increase in the neutrino energy losses followed by a decrease, along with a decrease in the temperature, that takes place more rapidly than it would without the phase transition. We demonstrate the important role of the neutrino radiation caused by the decay of spin waves in the cooling of neutron stars.Comment: 24 pages, 5 figure

    Thermal X-Ray Pulses Resulting From Pulsar Glitches

    Get PDF
    The non-spherically symmetric transport equations and exact thermal evolution model are used to calculate the transient thermal response to pulsars. The three possible ways of energy release originated from glitches, namely the `shell', `ring' and `spot' cases are compared. The X-ray light curves resulting from the thermal response to the glitches are calculated. Only the `spot' case and the `ring' case are considered because the `shell' case does not produce significant modulative X-rays. The magnetic field (B⃗\vec B) effect, the relativistic light bending effect and the rotational effect on the photons being emitted in a finite region are considered. Various sets of parameters result in different evolution patterns of light curves. We find that this modulated thermal X-ray radiation resulting from glitches may provide some useful constraints on glitch models.Comment: 48 pages, 20 figures, submitted to Ap

    Polarization of the electron and positron produced in combined Coulomb and strong laser fields

    Full text link
    The process of e+e−e^+e^- production in the superposition of a Coulomb and a strong laser field is considered. The pair production rate integrated over the momentum and summed over the spin projections of one of the particles is derived exactly in the parameters of the laser field and in the Born approximation with respect to the Coulomb field. The case of a monochromatic circularly polarized laser field is considered in detail. A very compact analytical expression of the pair production rate and its dependence on the polarization of one of the created particles is obtained in the quasiclassical approximation for the experimentally relevant case of an undercritical laser field. As a result, the polarization of the created electron (positron) is derived.Comment: 16 pages, no figure

    Electron cyclotron mass in undoped CdTe/CdMnTe quantum wells

    Full text link
    Optically detected cyclotron resonance of two-dimensional electrons has been studied in nominally undoped CdTe/(Cd,Mn)Te quantum wells. The enhancement of carrier quantum confinement results in an increase of the electron cyclotron mass from 0.099m0m_0 to 0.112m0m_0 with well width decreasing from 30 down to 3.6 nm. Model calculations of the electron effective mass have been performed for this material system and good agreement with experimental data is achieved for an electron-phonon coupling constant α\alpha =0.32
    • …
    corecore