52 research outputs found

    Fabrication of transistors on flexible substrates: from mass-printing to high-resolution alternative lithography strategies

    Get PDF
    In this report, the development of conventional, mass-printing strategies into high-resolution, alternative patterning techniques is reviewed with the focus on large-area patterning of flexible thin-film transistors (TFTs) for display applications. In the first part, conventional and digital printing techniques are introduced and categorized as far as their development is relevant for this application area. The limitations of conventional printing guides the reader to the second part of the progress report: alternative-lithographic patterning on low-cost flexible foils for the fabrication of flexible TFTs. Soft and nanoimprint lithography-based patterning techniques and their limitations are surveyed with respect to patterning on low-cost flexible foils. These show a shift from fabricating simple microlense structures to more complicated, high-resolution electronic devices. The development of alternative, low-temperature processable materials and the introduction of high-resolution patterning strategies will lead to the low-cost, self-aligned fabrication of flexible displays and solar cells from cheaper but better performing organic materials

    Double-layer imprint lithography on wafers and foils from the submicrometer to the millimeter scale

    No full text
    In this paper, a thermal imprint technique, double-layer nanoimprint lithography (dlNIL), is introduced, allowing complete filling of features in the dimensional range of submicrometer to millimeter. The imprinting and filling quality of dlNIL was studied on Si substrates as a model system and compared to results obtained with regular NIL (NIL) and reverse NIL (rNIL). Wavy foils were imprinted with NIL, rNIL and dlNIL and the patterning results compared and discussed. With dlNIL, a new application possibility was introduced in which two different resists having, for example, a different etch resistance to a certain plasma were combined within one imprint step. dlNIL allows extension to many resist combinations for tailored nanostructure fabrication. © 2011 American Chemical Society

    Investigation of the effects of LIFT printing with a KrF-excimer laser on thermally sensitive electrically conductive adhesives

    No full text
    Laser induced forward transfer is an emerging material deposition technology. We investigated the feasibility of this technique for printing thermally sensitive, electrically conductive adhesives with and without using an intermediate dynamic release layer. A 248nm KrF-excimer laser was used to print the epoxy-based conductive adhesives containing silver flakes down to 75μm dot size. The process is particularly relevant for realizing electrical connections to surface mount devices in the microelectronics industry. Characterization of the printed materials was analyzed by Fourier transform infrared spectroscopy, four-point electrical measurements, die-shear testing and temperature shock testing, to establish that the properties of the adhesive were not affected by direct or indirect laser irradiation. The lack of degradation by the laser onto the adhesives confirms the potential of this technique for interconnection applications. cop. 2014 Astro Ltd

    An optofluidic mechanical system for elasticity measurement of thin biological tissues

    No full text
    As dura mater has an anisotropic fibrous structure and exists under wet and dynamic stretching conditions in the brain, its mechanical properties have not yet been properly investigated. Here we developed a fluid-assisted mechanical system integrated with a photonic sensor and a pressure sensor in order to measure the elasticity of the dura mater. Porcine dura mater sample was loaded as a stretched diaphragm into a liquid chamber to mimic the in vivo condition. Increasing the flow rate of saline solution into the chamber swelled and deformed the dura mater. The micron-scale deflection of the dura mater was optically detected by the photonic sensor. Fluid pressure and deflection values were then used to calculate the elastic modulus. The average elastic modulus of the porcine dura mater was 31.14 MPa. We further measured the elasticity of a well-known material to further validate the system. We expect that this optofluidic system developed in this study will be useful to measure the elasticity of a variety of thin biological tissues.close1
    corecore