104 research outputs found

    GdRh2_2Si2_2: An exemplary tetragonal system for antiferromagnetic order with weak in-plane anisotropy

    Full text link
    The anisotropy of magnetic properties commonly is introduced in textbooks using the case of an antiferromagnetic system with Ising type anisotropy. This model presents huge anisotropic magnetization and a pronounced metamagnetic transition and is well-known and well-documented both, in experiments and theory. In contrast, the case of an antiferromagnetic XX-YY system with weak in-plane anisotropy is only poorly documented. We studied the anisotropic magnetization of the compound GdRh2_2Si2_2 and found that it is a perfect model system for such a weak-anisotropy setting because the Gd3+^{3+} ions in GdRh2_2Si2_2 have a pure spin moment of S=7/2 which orders in a simple AFM structure with Q=(001){\bf Q} = (001). We observed experimentally in M(B)M(B) a continuous spin-flop transition and domain effects for field applied along the [100][100]- and the [110][110]-direction, respectively. We applied a mean field model for the free energy to describe our data and combine it with an Ising chain model to account for domain effects. Our calculations reproduce the experimental data very well. In addition, we performed magnetic X-ray scattering and X-ray magnetic circular dichroism measurements, which confirm the AFM propagation vector to be Q=(001){\bf Q} = (001) and indicate the absence of polarization on the rhodium atoms

    Theory of Coupled Multipole Moments Probed by X-ray Scattering in CeB6_6

    Full text link
    A minimal model for multipole orders in CeB6_6 shows that degeneracy of the quadrupole order parameters and strong spin-orbit coupling lead to peculiar temperature and magnetic-field dependences of the X-ray reflection intensity at superlattice Bragg points. Furthermore, the intensity depends sensitively on the surface direction. These theoretical results explain naturally recent X-ray experiments in phases II and III of CeB6_6. It is predicted that under weak magnetic field perpendicular to the (111) surface, the reflection intensity should change non-monotonically as a function of temperature.Comment: 4 pages, 5 figure

    Charge density waves and Fermi surface reconstruction in the clean overdoped cuprate superconductor Tl2Ba2CuO6+δ.

    Get PDF
    Hall effect and quantum oscillation measurements on high temperature cuprate superconductors show that underdoped compositions have small Fermi surface pockets whereas when heavily overdoped, a single much larger pocket is found. The origin of this change in electronic structure has been unclear, but may be related to the high temperature superconductivity. Here we show that the clean overdoped single-layer cuprate Tl2Ba2CuO6+δ (Tl2201) displays CDW order with a remarkably long correlation length ξ ≈ 200 Å which disappears above a hole doping of pCDW ≈ 0.265. We show that the evolution of the electronic properties of Tl2201 as the doping is lowered may be explained by a Fermi surface reconstruction which accompanies the emergence of the CDW below pCDW. Our results demonstrate importance of CDW correlations in understanding the electronic properties of overdoped cuprates

    Coherent X-ray Scattering from Manganite Charge and Orbital Domains

    Full text link
    We report coherent x-ray scattering studies of charge and orbital domains in manganite systems. The experiments were carried out on LaMnO_3 and Pr_{0.6}Ca_{0.4}MnO_3, with the incident photon energy tuned near the Mn K edge. At room temperature, the orbital speckle pattern of LaMnO_3 was observed to be constant over a timescale of at least minutes, which is indicative of static orbital domains on this timescale. For Pr_{0.6}Ca_{0.4}MnO_3, both charge and orbital speckle patterns were observed. The observation of the latter rules out the presence of fast orbital fluctuations, while long time series data-- on the order of several minutes-- were suggestive of slow dynamic behavior. In contrast, the charge order speckle patterns were static.Comment: 6 pages, 4 figure

    Unusual dynamic charge-density-wave correlations in HgBa2_2CuO4+δ_{4+\delta}

    Full text link
    The charge-density-wave (CDW) instability in the underdoped, pseudogap part of the cuprate phase diagram has been a major recent research focus, yet measurements of dynamic, energy-resolved CDW correlations are still in their infancy. We report a high-resolution resonant inelastic X-ray scattering (RIXS) study of the underdoped cuprate superconductor HgBa2_{2}CuO4+δ_{4+\delta} (Tc=70T_c = 70 K). At T=250T=250 K, above the CDW order temperature TCDW≈200T_\mathrm{CDW} \approx 200 K, we observe significant dynamic CDW correlations at about 40 meV. This energy scale is comparable to both the superconducting gap and the previously reported low-energy pseudogap. At T=TcT = T_c, a strong elastic CDW peak appears, but the dynamic correlations around 40 meV remain virtually unchanged. In addition, we observe a new feature: dynamic correlations at significantly higher energy, with a characteristic scale of about 160 meV. A similar scale was previously identified in other experiments as a high-energy pseudogap. The existence of three distinct features in the charge response is highly unusual for a CDW system, and suggests that charge order in the cuprates is closely related to the pseudogap phenomenon and more complex than previously thought. We further observe the paramagnon dispersion along [1,0], across the two-dimensional CDW wavevector qCDW\boldsymbol{q}_\mathrm{CDW}, which is consistent with magnetic excitations measured by inelastic neutron scattering. Unlike for some other cuprates, our results point to the absence of a discernible coupling between CDW and magnetic excitations

    Magnetic excitations in stripe-ordered La1.875_{1.875}Ba0.125_{0.125}CuO4_4 studied using resonant inelastic x-ray scattering

    Full text link
    The charge and spin correlations in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 (LBCO 1/8) are studied using Cu L3L_3 edge resonant inelastic x-ray scattering (RIXS). The static charge order (CO) is observed at a wavevector of (0.24,0)(0.24,0) and its charge nature confirmed by measuring the dependence of this peak on the incident x-ray polarization. The paramagnon excitation in LBCO 1/8 is then measured as it disperses through the CO wavevector. Within the experimental uncertainty no changes are observed in the paramagnon due to the static CO, and the paramagnon seems to be similar to that measured in other cuprates, which have no static CO. Given that the stripe correlation modulates both the charge and spin degrees of freedom, it is likely that subtle changes do occur in the paramagnon due to CO. Consequently, we propose that future RIXS measurements, realized with higher energy resolution and sensitivity, should be performed to test for these effects.Comment: 5 pages, 4 figure

    Charge density waves and Fermi surface reconstruction in the clean overdoped cuprate superconductor Tl2Ba2CuO6+δ

    Get PDF
    Hall effect and quantum oscillation measurements on high temperature cuprate superconductors show that underdoped compositions have small Fermi surface pockets whereas when heavily overdoped, a single much larger pocket is found. The origin of this change in electronic structure has been unclear, but may be related to the high temperature superconductivity. Here we show that the clean overdoped single-layer cuprate Tl(2)Ba(2)CuO(6+δ) (Tl2201) displays CDW order with a remarkably long correlation length ξ ≈ 200 Å which disappears above a hole doping of p(CDW) ≈ 0.265. We show that the evolution of the electronic properties of Tl2201 as the doping is lowered may be explained by a Fermi surface reconstruction which accompanies the emergence of the CDW below p(CDW). Our results demonstrate importance of CDW correlations in understanding the electronic properties of overdoped cuprates

    Collective nature of spin excitations in superconducting cuprates probed by resonant inelastic x-ray scattering

    Get PDF
    We used resonant inelastic x-ray scattering (RIXS) with and without analysis of the scattered photon polarization, to study dispersive spin excitations in the high temperature superconductor YBa2Cu3O6+x over a wide range of doping levels (0.1 < x < 1). The excitation profiles were carefully monitored as the incident photon energy was detuned from the resonant condition, and the spin excitation energy was found to be independent of detuning for all x. These findings demonstrate that the largest fraction of the spin-flip RIXS profiles in doped cuprates arises from magnetic collective modes, rather than from incoherent particle-hole excitations as recently suggested theoretically [Benjamin et al. Phys. Rev. Lett. 112, 247002(2014)]. Implications for the theoretical description of the electron system in the cuprates are discussed.Comment: Supplementary materials are available upon reques

    Polarization resolved Cu L3L_3-edge resonant inelastic x-ray scattering of orbital and spin excitations in NdBa2_{2}Cu3_{3}O7−δ_{7-\delta}

    Full text link
    High resolution resonant inelastic x-ray scattering (RIXS) has proven particularly effective in the determination of crystal field and spin excitations in cuprates. Its strength lies in the large Cu L3L_{3} resonance and in the fact that the scattering cross section follows quite closely the single-ion model predictions, both in the insulating parent compounds and in the superconducting doped materials. However, the spectra become increasingly broader with (hole) doping, hence resolving and assigning spectral features has proven challenging even with the highest energy resolution experimentally achievable. Here we have overcome this limitation by measuring the complete polarization dependence of the RIXS spectra as function of momentum transfer and doping in thin films of NdBa2_{2}Cu3_{3}O7−δ_{7-\delta}. Besides confirming the previous assignment of dddd and spin excitations (magnon, bimagnon) in the antiferromagnetic insulating parent compound, we unequivocally single out the actual spin-flip contribution at all dopings. We also demonstrate that the softening of dddd excitations is mainly attributed to the shift of the xyxy peak to lower energy loss. These results provide a definitive assessment of the RIXS spectra of cuprates and demonstrate that RIXS measurements with full polarization control are practically feasible and highly informative.Comment: 14 pages, 10 figure

    Resonant X-Ray Scattering from CeB6_{6}

    Full text link
    We calculate the resonant x-ray scattering (RXS) spectra near the Ce LIIIL_{\rm III} absorption edge in CeB6_6, on the basis of a microscopic model that the 4f4f states of Ce are atomic while the 5d5d states form an energy band with a reasonable density of states. In the initial state, we employ an effective Hamiltonian of Shiina {\it et al}. in the antiferro-quadrupole (AFQ) ordering phase, while we construct the wave function consistent with the neutron scattering experiment in the magnetic ground state. In the intermediate state, we take full account of the intra-atomic Coulomb interaction. Without assuming any lattice distortion, we obtain sufficient RXS intensities on the AFQ superlattice spot. We obtain the spectral shape, the temperature and magnetic field dependences in good agreement with the experiment, thus demonstrating the mechanism that the intensity is brought about by the modulation of 5d5d states through the anisotropic term of the 5d5d-4f4f Coulomb interaction. In the magnetic ground state, a small pre-edge peak is found by the E2E_2 process. On the magnetic superlattice spot, we get a finite but considerably small intensity. The magnetic form factor is briefly discussed.Comment: Latex, 10 pages, 12 figures. To be published in J. Phys. Soc. Jpn., Vol.71, No. 7 (2002
    • …
    corecore