20 research outputs found

    Analytical approach to the Bose polaron via a q-deformed Lie algebra

    Get PDF
    We present a novel approach to the polaron problem developed on the notion of quantum groups, also known as qq-deformed Lie algebras. In this approach, the presence of an impurity in a bath can be depicted as a deformation of the Lie algebra of the bosonic creation and annihilation operators of the bath. In particular, we introduce a simple qq-deformed bosonic \textit{parent} Hamiltonian whose truncation on the quartic level in the usual bosonic creation and annihilation operators corresponds to the Fr\"{o}hlich-Bogoliubov polaron Hamiltonian. By using the qq-deformed Lie algebra, the introduced parent Hamiltonian allows us to derive the ground state energy of the Fr\"{o}hlich-Bogoliubov Hamiltonian analytically for the regime where the Bogoliubov dispersion law takes the phonon-like form.Comment: 5 pages, 1 figure with a Supplemental Materia

    Strong-field ionization via a high-order Coulomb-corrected strong-field approximation

    No full text
    Signatures of the Coulomb corrections in the photoelectron momentum distribution during laser-induced ionization of atoms or ions in tunneling and multiphoton regimes are investigated analytically in the case of an one-dimensional problem. High-order Coulomb corrected strong-field approximation is applied, where the exact continuum state in the S-matrix is approximated by the eikonal Coulomb-Volkov state including the second-order corrections to the eikonal. Although, without high-order corrections our theory coincides with the known analytical R-matrix (ARM) theory, we propose a simplified procedure for the matrix element derivation. Rather than matching the eikonal Coulomb-Volkov wave function with the bound state as in the ARM-theory to remove the Coulomb singularity, we calculate the matrix element via the saddle-point integration method as by time as well as by coordinate, and in this way avoiding the Coulomb singularity. The momentum shift in the photoelectron momentum distribution with respect to the ARM-theory due to high-order corrections is analyzed for tunneling and multiphoton regimes. The relation of the quantum corrections to the tunneling delay time is discusse

    Quasiclassical propagator of a relativistic particle via the path-dependent gauge potential

    No full text
    The proper time formalism for a particle propagator in an external electromagnetic field is combined with the path-dependent formulation of gauge theory to simplify the quasiclassical propagator of a relativistic particle. The latter is achieved due to a specific choice of gauge corresponding to the use of the classical path in the path-dependent formulation of gauge theory, which leads to cancellation of the interaction part of the classical action in the Feynman path integral. A simple expression for the quasiclassical propagator is obtained in all cases of the external field when the classical equations of motion in this field are integrable. As an example, simple expressions for the propagators are derived for a spinless charged particle interacting with the following fields: an arbitrary constant and uniform electromagnetic field, an arbitrary plane wave, and finally an arbitrary plane wave combined with an arbitrary constant and uniform electromagnetic field. In all these cases the quasiclassical propagator coincides with the exact result

    Above-threshold ionization with highly charged ions in super-strong laser fields: III. Spin effects and its dependence on laser polarization

    No full text
    Spin effects in the tunneling regime of strong field ionization of hydrogenlike highly charged ions in linearly as well as circularly polarized laser fields are investigated. The impact of the polarization of a laser field on the spin effects are analyzed. Spin-resolved differential ionization rates are calculated employing the relativistic Coulomb-corrected strong-field approximation (SFA) developed in the previous paper of the series. Analytical expressions for spin asymmetries and spin flip probability, depending on the laser's polarization, are obtained for the photoelectron momentum corresponding to the maximum of tunneling probability. A simpleman model is developed for the description of spin dynamics in tunnel-ionization, which provides an intuitive explanation for the spin effects. The spin flip is shown to be experimentally observable by using moderate highly charged ions with a charge of the order of 20 and a laser field with an intensity of I ~ 1022 W / cm2</sup

    Relativistic features and time delay of laser-induced tunnel-ionization

    No full text
    The electron dynamics in the classically forbidden region during relativistic tunnel-ionization process is investigated. The classical forbidden region in the relativistic regime is identified by defining a gauge invariant total energy operator. Introducing position dependent energy levels inside the tunneling barrier, we demonstrate that the relativistic tunnel-ionization can be well described by a one-dimensional intuitive picture. This picture predicts that, in contrast to the well-known nonrelativisitic regime, the ionized electron wave packet in the relativistic regime arises with a momentum shift along the laser propagation direction. This is compatible with results from a strong field approximation calculation where the binding potential is assumed to be zero-range. Further, the tunneling time delay, stemming from Wigner's definition, is investigated for model configurations of tunneling and compared with results obtained from the exact propagator. By adapting Wigner's time delay definition the tunneling time is investigated in the deep-tunneling and in the near-threshold-tunneling regimes. It is shown that while in the deep-tunneling regime signatures of the tunneling time delay are not measurable at remote distance, it is detectable, however, in the latter regime

    A Quantum Impurity Model for Anyons

    No full text
    International audienceOne of the hallmarks of quantum statistics, tightly entwined with the concept of topological phases of matter, is the prediction of anyons. Although anyons are predicted to be realized in certain fractional quantum Hall systems, they have not yet been unambiguously detected in experiment. Here we introduce a quantum impurity model, where bosonic (or fermionic) impurities turn into anyons as a consequence of their interaction with the surrounding many-particle bath. A cloud of phonons dresses each impurity in such a way that it effectively attaches fluxes/vortices to it and thereby converts it into an Abelian anyon. The corresponding quantum impurity model, first, provides a new approach to the numerical solution of the many-anyon problem, along with a new concrete perspective of anyons as emergent quasiparticles built from composite bosons or fermions. More importantly, the model paves the way towards realizing anyons using impurities in crystal lattices as well as ultracold gases. In particular, we consider two heavy electrons interacting with a two-dimensional lattice crystal in a magnetic field, and show that they behave as anyons when the impurity-bath system is rotated at the cyclotron frequency. A possible experimental realization is proposed by identifying the statistics parameter in terms of the mean square distance of the impurities and the magnetization of the impurity-bath system, both of which are accessible to experiment. Another proposed application are impurities immersed in a two-dimensional weakly interacting Bose gas

    Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields

    No full text
    Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility

    A Quantum Impurity Model for Anyons

    No full text
    One of the hallmarks of quantum statistics, tightly entwined with the concept of topological phases of matter, is the prediction of anyons. Although anyons are predicted to be realized in certain fractional quantum Hall systems, they have not yet been unambiguously detected in experiment. Here we introduce a quantum impurity model, where bosonic (or fermionic) impurities turn into anyons as a consequence of their interaction with the surrounding many-particle bath. A cloud of phonons dresses each impurity in such a way that it effectively attaches fluxes/vortices to it and thereby converts it into an Abelian anyon. The corresponding quantum impurity model, first, provides a new approach to the numerical solution of the many-anyon problem, along with a new concrete perspective of anyons as emergent quasiparticles built from composite bosons or fermions. More importantly, the model paves the way towards realizing anyons using impurities in crystal lattices as well as ultracold gases. In particular, we consider two heavy electrons interacting with a two-dimensional lattice crystal in a magnetic field, and show that they behave as anyons when the impurity-bath system is rotated at the cyclotron frequency. A possible experimental realization is proposed by identifying the statistics parameter in terms of the mean square distance of the impurities and the magnetization of the impurity-bath system, both of which are accessible to experiment. Another proposed application are impurities immersed in a two-dimensional weakly interacting Bose gas

    Experimental Evidence for Wigner's Tunneling Time

    Get PDF
    Tunneling of a particle through a potential barrier remains one of the most remarkable quantum phenomena. Owing to advances in laser technology, electric fields comparable to those electrons experience in atoms are readily generated and open opportunities to dynamically investigate the process of electron tunneling through the potential barrier formed by the superposition of both laser and atomic fields. Attosecond-time and angstrom-space resolution of the strong laser-field technique allow to address fundamental questions related to tunneling, which are still open and debated: Which time is spent under the barrier and what momentum is picked up by the particle in the meantime? In this combined experimental and theoretical study we demonstrate that for strong-field ionization the leading quantum mechanical Wigner treatment for the time resolved description of tunneling is valid. We achieve a high sensitivity on the tunneling barrier and unambiguously isolate its effects by performing a differential study of two systems with almost identical tunneling geometry. Moreover, working with a low frequency laser, we essentially limit the non-adiabaticity of the process as a major source of uncertainty. The agreement between experiment and theory implies two substantial corrections with respect to the widely employed quasiclassical treatment: In addition to a non-vanishing longitudinal momentum along the laser field-direction we provide clear evidence for a non-zero tunneling time delay. This addresses also the fundamental question how the transition occurs from the tunnel barrier to free space classical evolution of the ejected electron

    Supercritical water gasification of wet biomass residues from farming and food production practices: lab-scale experiments and comparison of different modelling approaches

    No full text
    Globally, large amounts of biomass wastes such as cattle manure, fruit/vegetable waste, and cheese whey residual streams are disposed of from farming and food processing industries. A promising approach to convert such biogenic residues into valuable biofuels is Supercritical Water Gasification (SCWG). A detailed investigation on SCWG of the mentioned wet biomass wastes has been performed to assess the thermodynamic behavior of such a complicated system. This is conducted by combining advanced models with a supplementary experimental study, providing deep insight into the behavior of the SCWG system for different bio-waste sources. For the modelling part, different approaches including global, constrained and thermal quasi-thermodynamic equilibria have been pursued to analyze the influence of operating parameters on the produced biogas quality. Furthermore, SCWG experiments were conducted using biomass samples provided by our industrial partner. Reasonable agreements were observed between experimental results and predictions from constrained and thermal-quasi equilibrium models, showing significant improvements over the global thermodynamic equilibrium model. Results showed that superimposition of carbon conversion efficiency together with the use of a constant molar amount of specific compounds can improve the accuracy of the global equilibrium model. Furthermore, comparisons between different models revealed the advantage of the thermal quasi-equilibrium model, which uses the “approach temperature” concept, over the constrained equilibrium model, by reducing the complexities inherent in superimposing multiple constraints. Overall, the thermal-quasi equilibrium approach has its advantages of lumping all the additional constraints used in the constrained equilibrium model into an effective approach temperature, offering (i) a better reproducibility of the experimental data point and (ii) a rigorous basis for scale-up calculation. The results of this study provide a better understanding of the SCWG process for different types of wet biomass feedstocks as result of applying advanced analytical approaches and comparing with experiments.Large Scale Energy Storag
    corecore