17 research outputs found

    Genome Sequence of the Pathogenic Intestinal Spirochete Brachyspira hyodysenteriae Reveals Adaptations to Its Lifestyle in the Porcine Large Intestine

    Get PDF
    Brachyspira hyodysenteriae is an anaerobic intestinal spirochete that colonizes the large intestine of pigs and causes swine dysentery, a disease of significant economic importance. The genome sequence of B. hyodysenteriae strain WA1 was determined, making it the first representative of the genus Brachyspira to be sequenced, and the seventeenth spirochete genome to be reported. The genome consisted of a circular 3,000,694 base pair (bp) chromosome, and a 35,940 bp circular plasmid that has not previously been described. The spirochete had 2,122 protein-coding sequences. Of the predicted proteins, more had similarities to proteins of the enteric Escherichia coli and Clostridium species than they did to proteins of other spirochetes. Many of these genes were associated with transport and metabolism, and they may have been gradually acquired through horizontal gene transfer in the environment of the large intestine. A reconstruction of central metabolic pathways identified a complete set of coding sequences for glycolysis, gluconeogenesis, a non-oxidative pentose phosphate pathway, nucleotide metabolism, lipooligosaccharide biosynthesis, and a respiratory electron transport chain. A notable finding was the presence on the plasmid of the genes involved in rhamnose biosynthesis. Potential virulence genes included those for 15 proteases and six hemolysins. Other adaptations to an enteric lifestyle included the presence of large numbers of genes associated with chemotaxis and motility. B. hyodysenteriae has diverged from other spirochetes in the process of accommodating to its habitat in the porcine large intestine

    Comparative genomics analysis and development of bioinformatics tools for two newly sequenced spirochaete species

    No full text
    The bacterial family Spirochaetales contains a number of potent pathogens responsible for serious and well-known diseases, such as tick Lyme disease (Borrelia burgdoferri), leptospirosis (Leptospira interrogens), and sypillis (Treponema pallidum). Though the mentioned species have been extensively investigated, there still remain spirochaete genera, and the spirochaete family as a whole, that have been minimally characterised. The Brachyspira genera includes species primarily responsible for gastro-intestinal diseases. Some biological characteristics of the two species B. hyodysenteriae and B. pilosicoli are known. For example B. hyodysenteriae causes disease in swine, while B. pilosicoli causes disease in a wide range of animals and humans. As there are no whole genome sequences available for any Brachyspira species, their underlying molecular mechanisms, evolution and function are not understood. This work is part of a large project which aims to sequence the two whole genome sequences for vaccine design and development. This thesis represents the first report of an in-depth comparative genome analysis (CGA) of the novel whole genome sequences of both Brachyspira species, providing greater understanding into their genomic functional relationships, evolution and diversity, while also identifying elements for potential vaccine and drug design and development

    Next-generation sequencing applications in clinical bacteriology

    No full text
    With the rapid advances in next generation sequencing (NGS) technologies, clinical and public health microbiology laboratories are increasingly adopting NGS technology in their workflows into their existing diagnostic cycles. In this bacteriology focused review, we review aspects and considerations for applying NGS in the clinical microbiology settings, and highlight the impact of such implementation on the analytical and post-analytical stages of diagnosis Keywords: Next generation sequencing, Clinical microbiology, Clinical diagnostics, Public health, Applications, Workflo

    A star is torn—molecular analysis divides the Mediterranean population of Poli’s stellate barnacle, Chthamalus stellatus (Cirripedia, Chtamalidae)

    No full text
    Poli’s stellate barnacle, Chthamalus stellatus Poli, populates the Mediterranean Sea, the North-Eastern Atlantic coasts, and the offshore Eastern Atlantic islands. Previous studies have found apparent genetic differences between the Atlantic and the Mediterranean populations of C. stellatus, suggesting possible geological and oceanographic explanations for these differences. We have studied the genetic diversity of 14 populations spanning from the Eastern Atlantic to the Eastern Mediterranean, using two nuclear genes sequences revealing a total of 63 polymorphic sites. Both genotype-based, haplotype-based and the novel SNP distribution population-based methods have found that these populations represent a geographic cline along the west to east localities. The differences in SNP distribution among populations further separates a major western cluster into two smaller clusters, the Eastern Atlantic and the Western Mediterranean. It also separates the major eastern cluster into two smaller clusters, the Mid-Mediterranean and Eastern Mediterranean. We suggested here environmental conditions like surface currents, water salinity and temperature as probable factors that have formed the population structure. We demonstrate that C. stellatus is a suitable model organism for studying how geological events and hydrographic conditions shape the fauna in the Mediterranean Sea

    Long-Read Sequencing and Hybrid Assembly for Genomic Analysis of Clinical Brucella melitensis Isolates

    No full text
    Brucella melitensis is a key etiological agent of brucellosis and has been increasingly subject to characterization using sequencing methodologies. This study aimed to investigate and compare short-read, long-read, and hybrid assemblies of B. melitensis. Eighteen B. melitensis isolates from Southern Israel were sequenced using Illumina and the Oxford Nanopore (ONP) MinION, and hybrid assemblies were generated with ONP long reads scaffolded on Illumina short reads. Short reads were assembled with INNUca with SPADes, long reads and hybrid with dragonflye. Abricate with the virulence factor database (VFDB) and in silico PCR (for the genes BetB, BPE275, BSPB, manA, mviN, omp19, perA, PrpA, VceC, and ureI) were used for identifying virulence genes, and a total of 61 virulence genes were identified in short-read, long-read, and hybrid assemblies of all 18 isolates. The phylogenetic analysis using long-read assemblies revealed several inconsistencies in cluster assignment as compared to using hybrid and short-read assemblies. Overall, hybrid assembly provided the most comprehensive data, and stand-alone short-read sequencing provided comparable data to stand-alone long-read sequencing regarding virulence genes. For genomic epidemiology studies, stand-alone ONP sequencing may require further refinement in order to be useful in endemic settings

    Challenging diagnosis of Mycolicibacterium cosmeticum/canariasense infection: A case report and literature review

    No full text
    We present the case of an immunocompromised child with Mycolicibacterium cosmeticum/ canariasense infection. Our case highlights the difficulty in adequate speciation. Most isolates described in the literature were identified using 16 s-rRNA PCR, which if performed on our sample would at best be inconclusive. Misidentifications could have a real impact on the body of evidence collected on these isolates thus far

    Intestinal Spirochaetes of the Genus Share a Partially Conserved 26 Kilobase Genomic Region with and

    No full text
    Anaerobic intestinal spirochaetes of the genus Brachyspira include both pathogenic and commensal species. The two best-studied members are the pathogenic species B. hyodysenteriae (the aetiological agent of swine dysentery) and B. pilosicoli (a cause of intestinal spirochaetosis in humans and other species). Analysis of near-complete genome sequences of these two species identified a highly conserved 26 kilobase (kb) region that was shared, against a background of otherwise very little sequence conservation between the two species. PCR amplification was used to identify sets of contiguous genes from this region in the related Brachyspira species B. intermedia, B. innocens, B. murdochii, B. alvinipulli , and B. aalborgi , and demonstrated the presence of at least part of this region in species from throughout the genus. Comparative genomic analysis with other sequenced bacterial species revealed that none of the completely sequenced spirochaete species from different genera contained this conserved cluster of coding sequences. In contrast, Enterococcus faecalis and Escherichia coli contained high gene cluster conservation across the 26 kb region, against an expected background of little sequence conservation between these phylogenetically distinct species. The conserved region in B. hyodysenteriae contained five genes predicted to be associated with amino acid transport and metabolism, four with energy production and conversion, two with nucleotide transport and metabolism, one with ion transport and metabolism, and four with poorly characterised or uncertain function, including an ankyrin repeat unit at the 5’ end. The most likely explanation for the presence of this 26 kb region in the Brachyspira species and in two unrelated enteric bacterial species is that the region has been involved in horizontal gene transfer

    Fecal microbiota of the synanthropic golden jackal (Canis aureus)

    No full text
    Abstract The golden jackal (Canis aureus), is a medium canid carnivore widespread throughout the Mediterranean region and expanding into Europe. This species thrives near human settlements and is implicated in zoonoses such as rabies. This study explores for the first time, the golden jackal fecal microbiota. We analyzed 111 fecal samples of wild golden jackals using 16S rRNA amplicon sequencing the connection of the microbiome to animal characteristics, burden of pathogens and geographic and climate characteristics. We further compared the fecal microbiota of the golden jackal to the black-backed jackal and domestic dog. We found that the golden jackal fecal microbiota is dominated by the phyla Bacteroidota, Fusobacteriota and Firmicutes. The golden jackal fecal microbiota was associated with different variables, including geographic region, age-class, exposure to rabies oral vaccine, fecal parasites and toxoplasmosis. A remarkable variation in the relative abundance of different taxa was also found associated with different variables, such as age-class. Linear discriminant analysis effect size (LEfSe) analysis found abundance of specific taxons in each region, Megasphaera genus in group 1, Megamonas genus in group 2 and Bacteroides coprocola species in group 3. We also found a different composition between the fecal microbiota of the golden jackal, blacked-backed jackal and the domestic dog. Furthermore, LEfSe analysis found abundance of Fusobacterium and Bacteroides genera in the golden jackal, Clostridia class in blacked-backed jackal and Megamonas genus in domestic dog. The golden jackal fecal microbiota is influenced by multiple factors including host traits and pathogen burden. The characterization of the microbiota of this thriving species may aid in mapping its spread and proximity to human settlements. Moreover, understanding the jackal microbiota could inform the study of potential animal and human health risks and inform control measures

    TRAF3 suppression encourages B cell recruitment and prolongs survival of microbiome-intact mice with ovarian cancer

    No full text
    Abstract Background Ovarian cancer (OC) is known for exhibiting low response rates to immune checkpoint inhibitors that activate T cells. However, immunotherapies that activate B cells have not yet been extensively explored and may be a potential target, as B cells that secrete immunoglobulins have been associated with better outcomes in OC. Although the secretion of immunoglobulins is often mediated by the microbiome, it is still unclear what role they play in limiting the progression of OC. Methods We conducted an in-vivo CRISPR screen of immunodeficient (NSG) and immune-intact wild type (WT) C57/BL6 mice to identify tumor-derived immune-escape mechanisms in a BRAC1- and TP53-deficient murine ID8 OC cell line (designated ITB1). To confirm gene expression and signaling pathway activation in ITB1 cells, we employed western blot, qPCR, immunofluorescent staining, and flow cytometry. Flow cytometry was also used to identify immune cell populations in the peritoneum of ITB1-bearing mice. To determine the presence of IgA-coated bacteria in the peritoneum of ITB1-bearing mice and the ascites of OC patients, we employed 16S sequencing. Testing for differences was done by using Deseq2 test and two-way ANOVA test. Sequence variants (ASVs) were produced in Qiime2 and analyzed by microeco and phyloseq R packages. Results We identified tumor necrosis factor receptor-associated factor 3 (TRAF3) as a tumor-derived immune suppressive mediator in ITB1 cells. Knockout of TRAF3 (TRAF3KO) activated the type-I interferon pathway and increased MHC-I expression. TRAF3KO tumors exhibited a growth delay in WT mice vs. NSG mice, which was correlated with increased B cell infiltration and activation compared to ITB1 tumors. B cells were found to be involved in the progression of TRAF3KO tumors, and B-cell surface-bound and secreted IgA levels were significantly higher in the ascites of TRAF3KO tumors compared to ITB1. The presence of commensal microbiota was necessary for B-cell activation and for delaying the progression of TRAF3KO tumors in WT mice. Lastly, we observed unique profiles of IgA-coated bacteria in the ascites of OC-bearing mice or the ascites of OC patients. Conclusions TRAF3 is a tumor-derived immune-suppressive modulator that influences B-cell infiltration and activation, making it a potential target for enhancing anti-tumor B-cell responses in OC
    corecore