23 research outputs found

    Comparing the outcome between multicentric/multifocal breast cancer and unifocal breast cancer: A systematic review and meta-analysis

    Get PDF
    ObjectiveThis systematic review and meta-analysis compares the outcome between MMBC and unifocal breast cancer (UFBC), in order to provide a theoretical basis for the design of an appropriate clinical therapeutic strategy of MMBC patients.MethodsPubMed, Embase, The Cochrane Library, Web of science, CNKI, WanFang Data, CBM and VIP database were searched from inception to July 2021, and observational studies reporting the outcome of patients with MMBC and UFBC were included. We extracted or calculated the mortality rates of MMBC and UFBC patients; and obtained the hazard ratios; odds ratios; relative risks; and the corresponding 95% confidence intervals from the eligible studies. All the meta-analyses were conducted by using the Stata 15.0 software.Results31 eligible studies comprising a total of 15,703 individuals were included. The meta-analysis revealed that MMBC did not have a significant association with poor overall survival (HR=1.04, 95% CI=0.96-1.12), disease-free survival (HR= 1.07, 95% CI= 0.84-1.36), breast cancer-specific survival (HR=1.42, 95% CI= 0.89-2.27), recurrence-free survival (HR= 0.878, 95% CI= 0.652-1.182), local recurrence-free survival (HR= 0.90, 95% CI= 0.57-1.42), and contralateral breast cancer risk (RR= 0.908, 95% CI= 0.667-1.234). However, MMBC appeared to have a correlation with a slightly higher risk of death (OR=1.31, 95% CI=1.18-1.45).ConclusionPatients with MMBC appeared to have a higher risk of death, however, it may not be independently associated with poorer outcomes. Considering the inter-study heterogeneity and other limitations, our results need to be validated by further multicenter prospective studies with a large sample size in the future

    ChemiQ: A Chemistry Simulator for Quantum Computer

    Full text link
    Quantum computing, an innovative computing system carrying prominent processing rate, is meant to be the solutions to problems in many fields. Among these realms, the most intuitive application is to help chemical researchers correctly de-scribe strong correlation and complex systems, which are the great challenge in current chemistry simulation. In this paper, we will present a standalone quantum simulation tool for chemistry, ChemiQ, which is designed to assist people carry out chemical research or molecular calculation on real or virtual quantum computers. Under the idea of modular programming in C++ language, the software is designed as a full-stack tool without third-party physics or chemistry application packages. It provides services as follow: visually construct molecular structure, quickly simulate ground-state energy, scan molecular potential energy curve by distance or angle, study chemical reaction, and return calculation results graphically after analysis.Comment: software,7 pages, 5 figure

    Rapid and controllable synthesis of nanocrystallized nickel-cobalt boride electrode materials via a mircoimpinging stream reaction for high performance supercapacitors

    Get PDF
    Nickel-cobalt borides (denoted as NCBs) have been considered as a promising candidate for aqueous supercapacitors due to their high capacitive performances. However, most reported NCBs are amorphous that results in slow electron transfer and even structure collapse during cycling. In this work, a nanocrystallized NCBs-based supercapacitor is successfully designed via a facile and practical microimpinging stream reactor (MISR) technique, composed of a nanocrystallized NCB core to facilitate the charge transfer, and a tightly contacted Ni-Co borates/metaborates (NCBi) shell which is helpful for OH^- adsorption. These merits endow NCB@NCBi a large specific capacity of 966 C g^-1 (capacitance of 2415 F g^-1) at 1 A g^-1 and good rate capability (633.2 C g^-1 at 30 A g^-1), as well as a very high energy density of 74.3 Wh kg^-1 in an asymmetric supercapacitor device. More interestingly, it is found that a gradual in situ conversion of core NCBs to nanocrystallized Ni-Co (oxy)-hydroxides inwardly takes place during the cycles, which continuously offers large specific capacity due to more electron transfer in the redox reaction processes. Meanwhile, the electron deficient state of boron in metal-borates shells can make it easier to accept electrons and thus promote ionic conduction

    Mechanisms of vapor‐phase antibacterial action of essential oil from Cinnamomum camphora var. linaloofera Fujita

    No full text
    The purpose of this study was to investigate antibacterial activity of essential oil from Cinnamomum camphora var. linaloofera Fujita (EOL) at vapor phase and its mechanism of bactericidal action against Escherichia coli. Results showed that the vapor‐phase EOL had significant antibacterial activity with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 200 μl/L. Further analyses showed that treatment of E. coli with vapor‐phase EOL resulted in partial degradation of cell membrane, increased membrane permeability, leakage of cytoplasm materials, and prominent distortion and shrinkage of bacterial cells. FTIR showed that EOL altered bacterial protein secondary and tertiary structures. GC/MS analysis showed that the components of vapor‐phase EOL included linalool (69.94%), camphor (10.90%), nerolidol (10.92%), and safrole (8.24%), of which linalool had bactericidal activity. Quantum chemical analysis suggested that the antibacterial reactive center of linalool was oxygen atom (O10) which transferred electrons during antibacterial action by the donation of electrons

    Symmetry enhanced variational quantum imaginary time evolution

    No full text
    The variational quantum imaginary time evolution (VarQITE) algorithm is a near-term method to prepare the ground state and Gibbs state of Hamiltonians. Finding an appropriate parameterization of the quantum circuit is crucial to the success of VarQITE. This work provides guidance for constructing parameterized quantum circuits according to the locality and symmetries of the Hamiltonian. Our approach can be used to implement the unitary and anti-unitary symmetries of a quantum system, which significantly reduces the depth and degree of freedom of the parameterized quantum circuits. To benchmark the proposed parameterized quantum circuits, we carry out VarQITE experiments on statistical models. Numerical results confirm that the symmetry-enhanced circuits outperform the frequently-used parametrized circuits in the literature

    Mechanisms of vapor‐phase antibacterial action of essential oil from Cinnamomum camphora var. linaloofera Fujita against Escherichia coli

    No full text
    The purpose of this study was to investigate antibacterial activity of essential oil from Cinnamomum camphora var. linaloofera Fujita (EOL) at vapor phase and its mechanism of bactericidal action against Escherichia coli. Results showed that the vapor‐phase EOL had significant antibacterial activity with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 200 μl/L. Further analyses showed that treatment of E. coli with vapor‐phase EOL resulted in partial degradation of cell membrane, increased membrane permeability, leakage of cytoplasm materials, and prominent distortion and shrinkage of bacterial cells. FTIR showed that EOL altered bacterial protein secondary and tertiary structures. GC/MS analysis showed that the components of vapor‐phase EOL included linalool (69.94%), camphor (10.90%), nerolidol (10.92%), and safrole (8.24%), of which linalool had bactericidal activity. Quantum chemical analysis suggested that the antibacterial reactive center of linalool was oxygen atom (O10) which transferred electrons during antibacterial action by the donation of electrons

    Development and Experimental Analysis of a Fuzzy Grey Control System on Rapeseed Cleaning Loss

    No full text
    One of the most important means of improving the mechanization of rapeseed harvests and increasing farmers’ income is to reduce the cleaning loss of rapeseed. In this study, a fuzzy grey control system was developed using an assembled cleaning loss sensor. Based on experimental data, the relationship between the cleaning loss and the opening of the louver sieve in the cleaning device was obtained. The fuzzy control scheme was established by combining grey prediction and the fuzzy control principle. Secondly, a microcontroller unit (MCU) was used as the controller, and the opening of the louver sieve was automatically regulated by detecting the signal of the cleaning loss. Finally, the performance and robustness of the control system was evaluated in field tests. Different experiments were conducted under different speed conditions to reflect the variable throughput. Results showed that using the grey prediction control system can realize the adjustment of the louver sieve opening in real time. The cleaning loss could be maintained within the ideal setpoint interval, compared with the operation with the control system switched off. These findings indicate that the application of the grey fuzzy control system reduces cleaning loss, and the nonlinear, time-variable and time delay problems in cleaning devices can be solved effectively

    Temporal and Spatial Variations in the Normalized Difference Vegetation Index in Shanxi Section of the Yellow River Basin and Coal Mines and Their Response to Climatic Factors

    No full text
    Investigating the spatiotemporal variations in the Normalized Difference Vegetation Index (NDVI) in the Shanxi section of the Yellow River Basin and its coal mining areas holds significant importance for dynamic vegetation monitoring and mining area management. This study employs MODIS NDVI data and combines various analytical methods, including trend analysis and coefficient of variation analysis, to reveal the characteristics of NDVI spatiotemporal variations and their response to climatic factors in the study area. The results indicate the following: (1) The overall NDVI in the Shanxi section of the Yellow River Basin exhibits a growth trend with an annual growth rate of 1.82% and a 36% increase. Among the mining areas, the NDVI increase is most prominent in the Hebaopian mining area with a 100% growth, while the QinYuan mining area shows the lowest increase at 21%; (2) The NDVI in the Shanxi section of the Yellow River Basin displays high fluctuations, with areas of moderate and high fluctuations accounting for 54.39% of the total. The Hebaopian mining area has a substantial portion of high-fluctuation areas at 38.85%; (3) According to the Hurst index analysis, future vegetation changes in the Shanxi section of the Yellow River Basin are uncertain, with approximately 9.77% of areas expected to continue improving; (4) The variations in the NDVI and climatic factors across the Shanxi section of the Yellow River Basin display spatial heterogeneity. The NDVI exhibits a positive correlation with both temperature and precipitation, with the correlation with precipitation being more pronounced than that with temperature. Precipitation exerts a more significant influence on the NDVI than temperature. These findings not only provide scientific guidance for vegetation restoration and area management in the Shanxi section of the Yellow River Basin and its mining areas but also serve as a scientific basis for decision making regarding vegetation management under the influence of climate change and human activities

    Application of a Variable Weight Time Function Combined Model in Surface Subsidence Prediction in Goaf Area: A Case Study in China

    No full text
    To attain precise forecasts of surface displacements and deformations in goaf areas (a void or cavity that remains underground after the extraction of mineral resources) following coal extraction, this study based on the limitations of individual time function models, conducted a thorough analysis of how the parameters of the model impact subsidence curves. Parameter estimation was conducted using the trust-region reflective algorithm (TRF), and the time function models were identified. Then we utilized a combined model approach and introduced the sliding window mechanism to assign variable weights to the model. Based on this, the combined model was used for prediction, followed by the application of this composite prediction to engineering scenarios for the dynamic forecasting of surface movements and deformations. The results indicated that, in comparison with DE, GA, PSO algorithms, the TRF exhibited superior stability and convergence. The parameter models obtained using this method demonstrated a higher level of predictive accuracy. Moreover, the predictive precision of the variable-weight time function combined model surpassed that of corresponding individual time function models. When employing six different variable-weight combination prediction models for point C22, the Weibull-MMF model demonstrated the most favorable fitting performance, featuring a root mean square error (RMSE) of 32.98 mm, a mean absolute error (MAE) of 25.66 mm, a mean absolute percentage error (MAPE) of 7.67%; the correlation coefficient R2 reached 0.99937. These metrics consistently outperformed their respective individual time function models. Additionally, in the validation process of the combined model at point C16, the residuals were notably smaller than those of individual models. This reaffirmed the accuracy and reliability of the proposed variable-weight combined model. Given that the variable-weight combination model was an evolution from individual time function models, its applicability extends to a broader range, offering valuable guidance for the dynamic prediction of surface movement and deformation in mining areas
    corecore