12 research outputs found

    Organoids and epithelial ovarian cancer-a future tool for personalized treatment decisions?

    No full text
    Epithelial ovarian cancer (EOC) is the 5th leading cause of cancer-associated death in females worldwide. Although 80% of cases respond well to initial treatment, >70% develop recurrent disease and become chemoresistant within the first two years. Therefore, there is a great need for predictive biomarkers to guide treatment. In the era of precision medicine, organoids are studied as a functional method to predict treatment response to oncological treatment. The overall purpose of the present systematic review was to uncover the current status of patient-derived organoids and their ability to perform drug screenings for EOC. A systematic search for studies investigating ovarian cancer and organoids was performed using PubMed and the Cochrane Library. A total of 10 studies fulfilled the inclusion criteria. The growth rates of organoids were described in six studies and varied between 29 and 90%. Only four studies included data on clinical outcomes and indicated a positive correlation between clinical response and drug screening results. Inter- and intratumoral heterogeneity was examined in seven studies. They all suggested that the organoids recapture the tumor heterogeneity. Only one study performed drug screenings on organoids obtained from different tumor sites and metastasis from the same patient with EOC and revealed a different response to at least one drug for all patients. In conclusion, organoids may provide a platform for predicting the clinical response to chemotherapy and gene-targeting therapy. However, the results are only exploratory and the number of published drug screening studies is minimal. Further research is required to prove that organoids are able to support the choice of oncological treatment in patients with EOC

    Third-molar development in relation to chronologic age in Turkish children and young adults

    No full text
    Objective: To assess estimation of chronologic age based on the stages of third-molar development following the eight stages (A-H) method of Demirjian et al and to compare third-molar development by sex and age with results of previous studies

    Nucleate boiling heat transfer enhancement using nanostructured al-alloy plates

    No full text
    Bubble departure frequency and active nucleation site density are two main factors that affect the nucleate boiling heat transfer. The potential enhancement of boiling heat transfer can be accomplished by surface modification. This treatment can be realized with changing parameters such as porosity, tilting angle and cavity radius. In this study, effects of different nanostructured Aluminum-Alloy (Al-Alloy) 2024 sheets on subcooled boiling heat transfer are investigated. A simple and environmentally friendly technique is used in order to produce these plates that are immersed into boiling deionized water for 20, 60 and 120 minutes. To examine boiling heat transfer characteristics, nanostructured plates are placed inside a rectangular channel. The channel is heated through four cartridge heaters connected to a DC power supply while deionized water is pumped inside using a micro gear pump at constant mass fluxes of 50 kg/m2s, 75 kg/m2s and 125 kg/m2s. It was found that an increase in nano-structure height leads to higher boiling heat transfer coefficients. Furthermore, a high speed camera system was used to investigate flow patterns in the microchannel. Visualization results indicated that bubbles movde faster the nano-structure height increased

    An experimental study on flow boiling characteristics of pHEMA nano-coated surfaces in a microchannel

    No full text
    In this study, the effect of pHEMA (Polyhydroxyethylmethacrylate) nanostructure coated surfaces on flow boiling was investigated in a rectangular microchannel. Experiments were conducted using deionized water as the working fluid to investigate flow boiling in a microchannel with dimensions of 14 cm length, 1.5 cm width, and 500 µm depth. The effect of pHEMA coatings (coated on 1.5 × 1.5 cm2 silicon plates) on heat transfer coefficients and flow patterns was assessed and supported using a high speed camera system. Although the contact angle decreases on nano-coated surfaces, due to surface porosity, boiling heat transfer coefficient increases. Furthermore, visualization results indicated that uncoated surfaces experienced a smaller nucleate boiling region. It was also observed that dryout occurs at higher heat fluxes for coated surfaces

    Potential Targeted Therapies in Ovarian Cancer

    No full text
    Background: We aimed to identify somatic pathogenic and likely pathogenic mutations using next-generation sequencing (NGS). The mutational findings were held against clinically well-described data to identify potential targeted therapies in Danish patients diagnosed with high-grade serous ovarian cancer (HGSC). Methods: We characterized the mutational profile of 128 HGSC patients. Clinical data were obtained from the Danish Gynecological Database and tissue samples were collected through the Danish CancerBiobank. DNA was analyzed using NGS. Results: 47 (37%) patients were platinum-sensitive, 32 (25%) partially platinum-sensitive, 35 (27%) platinum-resistant, and three (2%) platinum-refractory, while 11 (9%) patients did not receive chemotherapy. Overall, 27 (21%) had known druggable targets. Twelve (26%) platinum-sensitive patients had druggable targets for PARP inhibitors: one for tyrosine kinase inhibitors and one for immunotherapy treatment. Eight (25%) partially platinum-sensitive patients had druggable targets: seven were eligible for PARP inhibitors and one was potentially eligible for alpesilib and hormone therapy. Seven (20%) platinum-resistant patients had druggable targets: six (86%) were potentially eligible for PARP inhibitors, one for immunotherapy, and one for erdafitinib. Conclusions: PARP inhibitors are the most frequent potential targeted therapy in HGSC. However, other targeted therapies remain relevant for investigation according to our mutational findings
    corecore